ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-11
    Description: Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (microns)as) on targets as faint as V = 20, and differential accuracy of 0.6 (microns)as on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. Using differential astrometry SIM will search for planets with masses as small as an Earth orbiting in the 'habitable zone' around the nearest stars, and could discover many dozen if Earth-like planets are common. It will characterize the multiple-planet systems that are now known to exist, and it will be able to search for terrestrial planets around all of the candidate target stars in the Terrestrial Planet Finder and Darwin mission lists. It will be capable of detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. Precision astrometry allows the measurement of accurate dynamical masses for stars in binary systems. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the Galactic mass distribution, and through studies of tidal tails, the formation and evolution of the Galactic halo. SIM will contribute to cosmology through improved accuracy of the Hubble Constant. With repeated astrometric measurements of the nuclei of active galaxies, SIM will probe the dynamics of accretion disks around supermassive black holes, and the relativistic jets that emerge from them.
    Keywords: Astronomy
    Type: Publications of the Astronomical Society of the Pacific; Volume 120; 38-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: The infrared spectrum of many planetary nebulae, HII regions, galactic nuclei, reflection nebulae, and WC stars are dominated by a set of narrow and broad features which for many years were called the "unidentified infrared bands". These bands have been attributed to several carbon-rich molecular species which all contain only carbon and hydrogen atoms, and fall into the class of PAH molecules or are conglomerates of PAH skeletons. If these bands are from PAHs, then PAHs contain 1-10% of the interstellar carbon, making them the most abundant molecular species in the interstellar medium after CO. From ground based telescopes, we have studied the emission bands assigned to C-H bond vibrations in PAHs (3.3, 11.3 microns) in the Orion Bar region, and showed that their distribution and intensities are consistent with a quantitative PAH model. We have recently obtained spectral images of the Orion Bar from the KAO at 6.2 and 7.7 microns using a 128 x 128 Si:Ga array camera in order to study the C-C modes of the PAH molecules. We will show these new data along with our existing C-H mode data set, and make a quantitative comparison of the data with the existing PAH model.
    Keywords: Astronomy
    Type: Airborne Astronomy Symposium; Jul 05, 1994 - Jul 08, 1994; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: One of the James Webb Space Telescope's (JWST) primary science goals is to characterize the epoch of galaxy formation in the universe and observe the first galaxies and clusters of galaxies. This goal requires multi-band imaging and spectroscopic data in the near infrared portion of the spectrum for large numbers of very faint galaxies. Because such objects are sparse on the sky at the JWST resolution, a multi-object spectrograph is necessary to efficiently carry out the required observations. We have developed a fully programmable microshutter array that will be used as the field selector for the Near Infrared Spectrograph (NIRSpec) on JWST. This device allows slits to be opened at the locations of selected galaxies in the field of view while blocking other unwanted light from the sky background and bright sources. In practice, greater than 100 objects within the field of view will be observed simultaneously. In this paper, we describe the microshutter arrays, their development, fabrication, testing, and progress toward delivery of flight qualified devices to the NIRSpec instrument team in 2008.
    Keywords: Astronomy
    Type: SPIE 2007; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present 45 ground-based photometric observations of the K2-22 system collected between 2016 December and 2017 May, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of 〈1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN65984 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 156; 5; 227
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The results of spectral and spatial analysis of overlapping Rosat position sensitive proportional counter (PSPC) and Advanced Satellite for Cosmology and Astrophysics (ASCA) scanning imaging spectroradiometer (SIS) observations of the NGC 2300 group are presented. The spatial analysis of the co-added fields reveals that the diffuse X-ray gas can be traced to at least 25 arcmin. The temperature of the gas was found to be approximately 0.88 keV. The mass of gas within 0.33 Mpc is equal to 1.39 x 10(exp 12) solar mass. Comparing the mass of the galaxies plus the mass of hot gas the total mass of the system yields an observed baryonic fraction of 12 percent to 18 percent.
    Keywords: Astronomy
    Type: ; 575-576
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This report summarizes the activities of the Washington Correlator for 2012. The Washington Correlator provides up to 80 hours of attended processing per week plus up to 40 hours of unattended operation, primarily supporting Earth Orientation and astrometric observations. In 2012, the major programs supported include the IVS-R4, IVS-INT, APSG, and CRF observing sessions.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 216-218; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.
    Keywords: Astronomy
    Type: NASA-CR-203946 , NAS 1.26:203946
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.
    Keywords: Astronomy
    Type: Science Magazine; 1309-1312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: NearEarth objects (NEOs) are essential to understanding the origin of the Solar System. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes. The proximity of NEOs to Earth makes them favorable targets for space missions. In addition, knowledge of their physical properties is crucial for impact hazard assessment. However, in spite of their importance to science, exploration, and planetary defense, a representative sample of physical characteristics for subkm NEOs does not exist. Here we present the Mission Accessible NearEarth Objects Survey (MANOS), a multiyear survey of subkm NEOs that will provide a large, uniform catalog of physical properties (light curves + colors + spectra + astrometry), representing a 100fold increase over the current level of NEO knowledge within this size range. This survey will ultimately characterize more than 300 missionaccessible NEOs across the visible and nearinfrared ranges using telescopes in both the northern and southern hemispheres. MANOS has been awarded 24 nights per semester for the next three years on NOAO facilities including Gemini North and South, the Kitt Peak Mayall 4m, and the SOAR 4m. Additional telescopic assets available to our team include facilities at Lowell Observatory, the University of Hawaii 2.2m, NASA's IRTF, and the Magellan 6.5m telescopes. Our focus on subkm sizes and mission accessibility (dv 〈 7 km/s) is a novel approach to physical characterization studies and is possible through a regular cadence of observations designed to access newly discovered NEOs within days or weeks of first detection before they fade beyond observational limits. The resulting comprehensive catalog will inform global properties of the NEO population, advance scientific understanding of NEOs, produce essential data for robotic and spacecraft exploration, and develop a critical knowledge base to address the risk of NEO impacts. We intend to conduct this survey with complete transparency, publicly sharing our target lists and survey progress. We invite collaborative uses for these data as a way to broaden the scientific impact of this survey.
    Keywords: Astronomy
    Type: JSC-CN-29168 , Amreican Astronomical Society Division for Planetary Sciences Meeting; Oct 06, 2013 - Oct 11, 2013; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.
    Keywords: Astronomy
    Type: International Symposium on Artificial Intelligence Robotics and Automation in Space; Sep 04, 2012 - Sep 06, 2012; Turin; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...