ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Predicted shock-layer emission signatures of the Japanese Hayabusa capsule during its reentry are presented for comparison with flight measurements made during an airborne observation mission using NASA s DC-8 Airborne Laboratory. For each altitude, lines of sight were extracted from flow field solutions computed using an inhouse high-fidelity CFD code, DPLR, at 11 points along the flight trajectory of the capsule. These lines of sight were used as inputs for the line-by-line radiation code NEQAIR, and emission spectra of the air plasma were computed in the wavelength range from 300 nm to 1600 nm, a range which covers all of the different experiments onboard the DC-8. In addition, the computed flow field solutions were post-processed with the material thermal response code FIAT, and the resulting surface temperatures of the heat shield were used to generate thermal emission spectra based on Planck radiation. Both spectra were summed and integrated over the flow field. The resulting emission at each trajectory point was propagated to the DC-8 position and transformed into incident irradiance. Comparisons with experimental data are shown.
    Keywords: Fluid Mechanics and Thermodynamics; Astrodynamics
    Type: ARC-E-DAA-TN4536 , AIAA Aerospace Sciences Meeting; Jan 06, 2012 - Jan 09, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to spherical geometries of diameters ranging from 1 to 100 m for an entry velocity of 20 kms and stagnation pressures ranging from 1 to 100 atm; (ii) the influence of shape and departure of heating environment predictions from those for a simple spherical geometry; (iii) assessment of thermal response models for silica subject to intense radiation; and (iv) results for porosity-driven gross fragmentation of meteors, idealized as a collection of smaller objects. Lessons learned from these simulations will be used to help understand the Chelyabinsk meteor entry up to its first point of fragmentation.
    Keywords: Astrodynamics
    Type: ARC-E-DAA-TN21934 , 2015 IAA Planetary Defense Conference; Apr 13, 2015 - Apr 17, 2015; Frascati; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrodynamics
    Type: ARC-E-DAA-TN24556/SUPP , International Workshop on potentially Hazardous Asteroids Characterization, Atmospheric Entry and Risk Assessment; Jul 07, 2015 - Jul 09, 2015; Moffett Field; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...