ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Anthropogenic carbon  (2)
  • 06MT59_2; 06MT59_2/461; Bottle number; Calculated; CTD, Sea-Bird; CTD/Rosette; CTD-RO; DEPTH, water; Freon-11 (trichorofluoromethane); Freon-12 (dichlorodifluoromethane); Gas chromatography; M59/2; M59/2_461; Meteor (1986); Northeast Atlantic; Pressure, water; Salinity; Temperature, ice/snow; Temperature, water, potential  (1)
  • Oceans
  • Ocean circulation change
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 74 (2013): 48-63, doi:10.1016/j.dsr.2012.12.005.
    Beschreibung: Detection and attribution of hydrographic and biogeochemical changes in the deep ocean are challenging due to the small magnitude of their signals and to limitations in the accuracy of available data. However, there are indications that anthropogenic and climate change signals are starting to manifest at depth. The deep ocean below 2000 m comprises about 50% of the total ocean volume, and changes in the deep ocean should be followed over time to accurately assess the partitioning of anthropogenic carbon dioxide (CO2) between the ocean, terrestrial biosphere, and atmosphere. Here we determine the changes in the interior deep-water inorganic carbon content by a novel means that uses the partial pressure of CO2 measured at 20 °C, pCO2(20), along three meridional transects in the Atlantic and Pacific oceans. These changes are measured on decadal time scales using observations from the World Ocean Circulation Experiment (WOCE)/World Hydrographic Program (WHP) of the 1980s and 1990s and the CLIVAR/CO2 Repeat Hydrography Program of the past decade. The pCO2(20) values show a consistent increase in deep water over the time period. Changes in total dissolved inorganic carbon (DIC) content in the deep interior are not significant or consistent, as most of the signal is below the level of analytical uncertainty. Using an approximate relationship between pCO2(20) and DIC change, we infer DIC changes that are at the margin of detectability. However, when integrated on the basin scale, the increases range from 8–40% of the total specific water column changes over the past several decades. Patterns in chlorofluorocarbons (CFCs), along with output from an ocean model, suggest that the changes in pCO2(20) and DIC are of anthropogenic origin.
    Beschreibung: Rik Wanninkhof, Geun-Ha Park, John L. Bullister, and Richard A. Feely appreciate the support from the NOAA Office of Atmospheric and Oceanic Research and the Climate Observation Division. S.C.D. acknowledges support from NOAA Grant NA07OAR4310098. T.T. has been supported by grants from NSF and NOAA.
    Schlagwort(e): Ocean ; Carbon dioxide ; CO2 sink ; Anthropogenic carbon ; Deep-water
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Annual Review of Marine Science 8 (2016): 185-215, doi:10.1146/annurev-marine-052915-100829.
    Beschreibung: The ocean, a central component of Earth’s climate system, is changing. Given the global scope of these changes, highly accurate measurements of physical and biogeochemical properties need to be conducted over the full water column, spanning the ocean basins from coast to coast, and repeated every decade at a minimum, with a ship-based observing system. Since the late 1970s, when the Geochemical Ocean Sections Study (GEOSECS) conducted the first global survey of this kind, the World Ocean Circulation Experiment (WOCE) and Joint Global Ocean Flux Study (JGOFS), and now the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) have collected these “reference standard” data that allow quantification of ocean heat and carbon uptake, and variations in salinity, oxygen, nutrients, and acidity on basin scales. The evolving GO-SHIP measurement suite also provides new global information about dissolved organic carbon, a large bioactive reservoir of carbon.
    Beschreibung: Climate Observations Division of the U.S. NOAA Climate Program Office and NOAA Research; Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148; U.S. National Science Foundation [OCE- 0223869; OCE-0752970; OCE-0825163; OCE-1434000; OCE 0752972; OCE-0752980; OCE-1232962; OCE-1155983; OCE-1436748]; U.S. CLIVAR Project Office; Global Environment and Marine Department, Japan Meteorological Agency; Australian Climate Change Science Program (Australian Department of Environment and CSIRO); U.K. Natural Environment Research Council; European Union’s FP7 grant agreement 264879 (CarboChange); Horizon 2020 grant agreement No 633211; ETH Zurich Switzerland.
    Schlagwort(e): Anthropogenic climate change ; Ocean temperature change ; Salinity change ; Ocean carbon cycle ; Ocean oxygen and nutrients ; Ocean chlorofluorocarbons ; Ocean circulation change ; Ocean mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carter, B. R., Feely, R. A., Wanninkhof, R., Kouketsu, S., Sonnerup, R. E., Pardo, P. C., Sabine, C. L., Johnson, G. C., Sloyan, B. M., Murata, A., Mecking, S., Tilbrook, B., Speer, K., Talley, L. D., Millero, F. J., Wijffels, S. E., Macdonald, A. M., Gruber, N., & Bullister, J. L. Pacific anthropogenic carbon between 1991 and 2017. Global Biogeochemical Cycles, 33(5), (2019):597-617, doi:10.1029/2018GB006154.
    Beschreibung: We estimate anthropogenic carbon (Canth) accumulation rates in the Pacific Ocean between 1991 and 2017 from 14 hydrographic sections that have been occupied two to four times over the past few decades, with most sections having been recently measured as part of the Global Ocean Ship‐based Hydrographic Investigations Program. The rate of change of Canth is estimated using a new method that combines the extended multiple linear regression method with improvements to address the challenges of analyzing multiple occupations of sections spaced irregularly in time. The Canth accumulation rate over the top 1,500 m of the Pacific increased from 8.8 (±1.1, 1σ) Pg of carbon per decade between 1995 and 2005 to 11.7 (±1.1) PgC per decade between 2005 and 2015. For the entire Pacific, about half of this decadal increase in the accumulation rate is attributable to the increase in atmospheric CO2, while in the South Pacific subtropical gyre this fraction is closer to one fifth. This suggests a substantial enhancement of the accumulation of Canth in the South Pacific by circulation variability and implies that a meaningful portion of the reinvigoration of the global CO2 sink that occurred between ~2000 and ~2010 could be driven by enhanced ocean Canth uptake and advection into this gyre. Our assessment suggests that the accuracy of Canth accumulation rate reconstructions along survey lines is limited by the accuracy of the full suite of hydrographic data and that a continuation of repeated surveys is a critical component of future carbon cycle monitoring.
    Beschreibung: The data we use can be accessed at CCHDO website (https://cchdo.ucsd.edu/) and GLODAP website (https://www.glodap.info/). This research would not be possible without the hard work of the scientists and crew aboard the many repeated hydrographic cruises coordinated by GO‐SHIP, which is funded by NSF OCE and NOAA OAR. We thank funding agencies and program managers as follows: U.S., Australian, Japanese national science funding agencies that support data collection, data QA/QC, and data centers. Contributions from B. R. C., R. A. F., and R. W. are supported by the National Oceanic and Atmospheric Administration Global Ocean Monitoring and Observing Program (Data Management and Synthesis Grant: N8R3CEA‐PDM managed by Kathy Tedesco and David Legler). G. C. J. is supported by the Climate Observation Division, Climate Program Office, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research (fund reference 100007298), grant (N8R1SE3‐PGC). B. M. S was supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. N. G. acknowledges support by ETH Zurich. This is JISAO contribution 2018‐0149 and PMEL contribution 4786. We fondly remember John Bullister as a treasured friend, valued colleague, and dedicated mentor, and we thank him for sharing his days with us. He is and will be dearly missed.
    Schlagwort(e): Anthropogenic carbon ; Pacific ; Decadal variability ; EMLR ; Ocean acidification ; Repeat hydrography
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C11028, doi:10.1029/2010JC006251.
    Beschreibung: Repeat observations along the meridional Atlantic section A16 from Iceland to 56°S show substantial changes in the total dissolved inorganic carbon (DIC) concentrations in the ocean between occupations from 1989 through 2005. The changes correspond to the expected increase in DIC driven by the uptake of anthropogenic CO2 from the atmosphere, but the ΔDIC is more varied and larger, in some locations, than can be explained solely by this process. Concomitant large changes in oxygen (O2) suggest that processes acting on the natural carbon cycle also contribute to ΔDIC. Precise partial pressure of CO2 measurements suggest small but systematic increases in the bottom waters. To isolate the anthropogenic CO2 component (ΔCanthro) from ΔDIC, an extended multilinear regression approach is applied along isopycnal surfaces. This yields an average depth-integrated ΔCanthro of 0.53 ± 0.05 mol m−2 yr−1 with maximum values in the temperate zones of both hemispheres and a minimum in the tropical Atlantic. A higher decadal increase in the anthropogenic CO2 inventory is found for the South Atlantic compared to the North Atlantic. This anthropogenic CO2 accumulation pattern is opposite to that seen for the entire Anthropocene up to the 1990s. This change could perhaps be a consequence of the reduced downward transport of anthropogenic CO2 in the North Atlantic due to recent climate variability. Extrapolating the results for this section to the entire Atlantic basin (63°N to 56°S) yields an uptake of 5 ± 1 Pg C decade−1, which corresponds to about 25% of the annual global ocean uptake of anthropogenic CO2 during this period.
    Beschreibung: The CLIVAR/CO2 cruises are cosponsored by the physical and chemical oceanography divisions of the National Science Foundation and the Climate Observation Division of the Climate Program Office of NOAA. Support from the program managers involved is greatly appreciated. We also acknowledge a grant from NOAA (NOAA‐NA07OAR4310098), which supported part of the postcruise data analysis contributing to this manuscript. N.G. also acknowledges support from ETH Zurich.
    Schlagwort(e): Carbon cycling ; Biogeochemical cycles, processes, and modeling ; Oceans
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Institut für Umweltphysik, Universität Bremen
    Publikationsdatum: 2024-02-02
    Schlagwort(e): 06MT59_2; 06MT59_2/461; Bottle number; Calculated; CTD, Sea-Bird; CTD/Rosette; CTD-RO; DEPTH, water; Freon-11 (trichorofluoromethane); Freon-12 (dichlorodifluoromethane); Gas chromatography; M59/2; M59/2_461; Meteor (1986); Northeast Atlantic; Pressure, water; Salinity; Temperature, ice/snow; Temperature, water, potential
    Materialart: Dataset
    Format: text/tab-separated-values, 144 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...