ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-01-19
    Description: The product of the yeast cell cycle control gene cdc2, and its homologs in higher eukaryotes (p34cdc2), all contain a perfectly conserved sequence of 16 amino acids that has not been found in any other protein sequence. Microinjection of this peptide triggers a specific increase in the concentration of intracellular free Ca2+ that originates from intracellular stores in both starfish and Xenopus oocytes. Thus, p34cdc2 might interact through its conserved peptide domain with some component of the Ca2(+)-regulatory system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Picard, A -- Cavadore, J C -- Lory, P -- Bernengo, J C -- Ojeda, C -- Doree, M -- New York, N.Y. -- Science. 1990 Jan 19;247(4940):327-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS and INSERM, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2153316" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *CDC2 Protein Kinase ; Calcium/*metabolism ; Chloride Channels ; Chlorides/metabolism ; Cytoplasmic Granules/physiology ; Egtazic Acid/pharmacology ; Exocytosis/drug effects ; Female ; Genes, Fungal ; Growth Substances/*genetics ; Maturation-Promoting Factor ; Membrane Proteins/metabolism ; Microinjections ; Molecular Sequence Data ; Oocytes/drug effects/*physiology ; *Peptide Fragments ; Peptides/*pharmacology ; Starfish ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-02
    Description: MyD88 is a key downstream adapter for most Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 deficiency in mice leads to susceptibility to a broad range of pathogens in experimental settings of infection. We describe a distinct situation in a natural setting of human infection. Nine children with autosomal recessive MyD88 deficiency suffered from life-threatening, often recurrent pyogenic bacterial infections, including invasive pneumococcal disease. However, these patients were otherwise healthy, with normal resistance to other microbes. Their clinical status improved with age, but not due to any cellular leakiness in MyD88 deficiency. The MyD88-dependent TLRs and IL-1Rs are therefore essential for protective immunity to a small number of pyogenic bacteria, but redundant for host defense to most natural infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Bernuth, Horst -- Picard, Capucine -- Jin, Zhongbo -- Pankla, Rungnapa -- Xiao, Hui -- Ku, Cheng-Lung -- Chrabieh, Maya -- Mustapha, Imen Ben -- Ghandil, Pegah -- Camcioglu, Yildiz -- Vasconcelos, Julia -- Sirvent, Nicolas -- Guedes, Margarida -- Vitor, Artur Bonito -- Herrero-Mata, Maria Jose -- Arostegui, Juan Ignacio -- Rodrigo, Carlos -- Alsina, Laia -- Ruiz-Ortiz, Estibaliz -- Juan, Manel -- Fortuny, Claudia -- Yague, Jordi -- Anton, Jordi -- Pascal, Mariona -- Chang, Huey-Hsuan -- Janniere, Lucile -- Rose, Yoann -- Garty, Ben-Zion -- Chapel, Helen -- Issekutz, Andrew -- Marodi, Laszlo -- Rodriguez-Gallego, Carlos -- Banchereau, Jacques -- Abel, Laurent -- Li, Xiaoxia -- Chaussabel, Damien -- Puel, Anne -- Casanova, Jean-Laurent -- U19 AI057234/AI/NIAID NIH HHS/ -- U19 AI057234-02/AI/NIAID NIH HHS/ -- U19 AIO57234-02/PHS HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Aug 1;321(5889):691-6. doi: 10.1126/science.1158298.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics of Infectious Diseases, INSERM U550, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669862" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Bacterial Infections/*genetics/*immunology ; Cell Line, Transformed ; Child ; Child, Preschool ; Cytokines/metabolism ; Disease Susceptibility ; Female ; Gene Deletion ; Humans ; Immunity, Innate ; Male ; Mice ; Mutation, Missense ; Myeloid Differentiation Factor 88/*deficiency/genetics/metabolism ; Pneumococcal Infections/genetics/immunology ; Pseudomonas Infections/genetics/immunology ; Receptors, Interleukin-1/immunology/metabolism ; Signal Transduction ; Staphylococcal Infections/genetics/immunology ; Toll-Like Receptors/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-04-11
    Description: The chemokine receptors CXCR4 and CCR5 have recently been shown to act as coreceptors, in concert with CD4, for human immunodeficiency virus-type 1 (HIV-1) infection. RANTES and other chemokines that interact with CCR5 and block infection of peripheral blood mononuclear cell cultures inhibit infection of primary macrophages inefficiently at best. If used to treat HIV-1-infected individuals, these chemokines could fail to influence HIV replication in nonlymphocyte compartments while promoting unwanted inflammatory side effects. A derivative of RANTES that was created by chemical modification of the amino terminus, aminooxypentane (AOP)-RANTES, did not induce chemotaxis and was a subnanomolar antagonist of CCR5 function in monocytes. It potently inhibited infection of diverse cell types (including macrophages and lymphocytes) by nonsyncytium-inducing, macrophage-tropic HIV-1 strains. Thus, activation of cells by chemokines is not a prerequisite for the inhibition of viral uptake and replication. Chemokine receptor antagonists like AOP-RANTES that achieve full receptor occupancy at nanomolar concentrations are strong candidates for the therapy of HIV-1-infected individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simmons, G -- Clapham, P R -- Picard, L -- Offord, R E -- Rosenkilde, M M -- Schwartz, T W -- Buser, R -- Wells, T N -- Proudfoot, A E -- New York, N.Y. -- Science. 1997 Apr 11;276(5310):276-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Virology Group, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9092481" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/metabolism ; Binding, Competitive ; Cats ; Cell Line ; Cells, Cultured ; Chemokine CCL4 ; Chemokine CCL5/metabolism/pharmacology ; Chemotaxis, Leukocyte ; HIV-1/*drug effects/physiology ; HeLa Cells ; Humans ; Macrophage Inflammatory Proteins/metabolism ; Macrophages/drug effects/*virology ; Receptors, CCR5 ; *Receptors, Chemokine ; Receptors, Cytokine/*antagonists & inhibitors/metabolism ; Receptors, HIV/*antagonists & inhibitors/metabolism ; T-Lymphocytes/drug effects/*virology ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-14
    Description: Neural crest cells migrate extensively and give rise to most of the peripheral nervous system, including sympathetic, parasympathetic, enteric, and dorsal root ganglia. We studied how parasympathetic ganglia form close to visceral organs and what their precursors are. We find that many cranial nerve-associated crest cells coexpress the pan-autonomic determinant Paired-like homeodomain 2b (Phox2b) together with markers of Schwann cell precursors. Some give rise to Schwann cells after down-regulation of PHOX2b. Others form parasympathetic ganglia after being guided to the site of ganglion formation by the nerves that carry preganglionic fibers, a parsimonious way of wiring the pathway. Thus, cranial Schwann cell precursors are the source of parasympathetic neurons during normal development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Espinosa-Medina, I -- Outin, E -- Picard, C A -- Chettouh, Z -- Dymecki, S -- Consalez, G G -- Coppola, E -- Brunet, J-F -- P01 HD036379/HD/NICHD NIH HHS/ -- R01 DK067826/DK/NIDDK NIH HHS/ -- R21 DA023643/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):87-90. doi: 10.1126/science.1253286. Epub 2014 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie de l'Ecole Normale Superieure, Inserm U1024, and CNRS UMR 8197, 75005 Paris, France. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy. ; Institut de Biologie de l'Ecole Normale Superieure, Inserm U1024, and CNRS UMR 8197, 75005 Paris, France. jfbrunet@biologie.ens.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24925912" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Cranial Nerves/cytology/metabolism ; Down-Regulation ; Ganglia, Parasympathetic/cytology/*embryology ; Homeodomain Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Nerve Tissue Proteins/genetics/metabolism ; Neural Crest/cytology/metabolism ; Neural Stem Cells/*cytology ; Neurogenesis/genetics/*physiology ; Neurons/*cytology ; Schwann Cells/*cytology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-15
    Description: Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-gamma (IFN-gamma) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORgamma and RORgammaT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORgamma- and RORgammaT-deficient individuals also displayed an impaired IFN-gamma response to Mycobacterium. This principally reflected profoundly defective IFN-gamma production by circulating gammadelta T cells and CD4(+)CCR6(+)CXCR3(+) alphabeta T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORgamma, RORgammaT, or both.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Satoshi -- Markle, Janet G -- Deenick, Elissa K -- Mele, Federico -- Averbuch, Dina -- Lagos, Macarena -- Alzahrani, Mohammed -- Al-Muhsen, Saleh -- Halwani, Rabih -- Ma, Cindy S -- Wong, Natalie -- Soudais, Claire -- Henderson, Lauren A -- Marzouqa, Hiyam -- Shamma, Jamal -- Gonzalez, Marcela -- Martinez-Barricarte, Ruben -- Okada, Chizuru -- Avery, Danielle T -- Latorre, Daniela -- Deswarte, Caroline -- Jabot-Hanin, Fabienne -- Torrado, Egidio -- Fountain, Jeffrey -- Belkadi, Aziz -- Itan, Yuval -- Boisson, Bertrand -- Migaud, Melanie -- Arlehamn, Cecilia S Lindestam -- Sette, Alessandro -- Breton, Sylvain -- McCluskey, James -- Rossjohn, Jamie -- de Villartay, Jean-Pierre -- Moshous, Despina -- Hambleton, Sophie -- Latour, Sylvain -- Arkwright, Peter D -- Picard, Capucine -- Lantz, Olivier -- Engelhard, Dan -- Kobayashi, Masao -- Abel, Laurent -- Cooper, Andrea M -- Notarangelo, Luigi D -- Boisson-Dupuis, Stephanie -- Puel, Anne -- Sallusto, Federica -- Bustamante, Jacinta -- Tangye, Stuart G -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900044C/AI/NIAID NIH HHS/ -- HHSN272200900044C/PHS HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- T32 AI007512/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):606-13. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ; Institut Curie, INSERM U932, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. ; Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Trudeau Institute, Saranac Lake, NY 12983, USA. ; La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; Department of Radiology, Assistance Publique-Hopitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK. ; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Howard Hughes Medical Institute, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160376" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Candida albicans/*immunology ; Candidiasis, Chronic Mucocutaneous/complications/*genetics/immunology ; Cattle ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Immunity/*genetics ; Interferon-gamma/immunology ; Interleukin-17/immunology ; Mice ; Mutation ; Mycobacterium bovis/immunology/isolation & purification ; Mycobacterium tuberculosis/immunology/isolation & purification ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Pedigree ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology ; Receptors, Antigen, T-Cell, gamma-delta/genetics/immunology ; Severe Combined Immunodeficiency/*genetics ; T-Lymphocytes/immunology ; Thymus Gland/abnormalities/immunology ; Tuberculosis, Bovine/*genetics/immunology ; Tuberculosis, Pulmonary/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1980-02-08
    Description: Several dysgenic traits may occur within the Drosophila melanogaster species as a result of crosses between different strains. Crossing two mutually interacting categories, named inducer and reactive, may lead, among other abnormalities, to a specific kind of female sterility that has proved useful for investigating the genetic factors involved in the interaction. The reactive state appears to result from a cytoplasmic state ultimately controlled by a chromosomal polygenic system. The inducer character is determined by a chromosomal factor that exhibits all characteristics of a transposable element. Overall, the data contribute to clarification of mutator activities in D. melanogaster and open new opportunities to investigate unusual genetic mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bregliano, J C -- Picard, G -- Bucheton, A -- Pelisson, A -- Lavige, J M -- L'Heritier, P -- New York, N.Y. -- Science. 1980 Feb 8;207(4431):606-11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6766221" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Animals, Laboratory/genetics ; Animals, Wild/genetics ; Cytoplasm/physiology ; Drosophila melanogaster/*genetics ; Ecology ; Female ; Genes, Regulator ; Hot Temperature ; Hybridization, Genetic ; Infertility, Female/genetics ; Mutation ; Oocytes/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...