ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-06-29
    Description: Despite the importance of selection against deleterious mutations in natural populations, reliable estimates of the genomic numbers of mutant alleles in wild populations are scarce. We found that, in wild-caught bluefin killifish Lucania goodei (Fundulidae) and wild-caught zebrafish Danio rerio (Cyprinidae), the average numbers of recessive lethal alleles per individual are 1.9 (95% confidence limits 1.3 to 2.6) and 1.4 (95% confidence limits 1.0 to 2.0), respectively. These results, together with data on several Drosophila species and on Xenopus laevis, show that phylogenetically distant animals with different genome sizes and numbers of genes carry similar numbers of lethal mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCune, Amy R -- Fuller, Rebecca C -- Aquilina, Allisan A -- Dawley, Robert M -- Fadool, James M -- Houle, David -- Travis, Joseph -- Kondrashov, Alexey S -- New York, N.Y. -- Science. 2002 Jun 28;296(5577):2398-401.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. arm2@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12089444" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Crosses, Genetic ; Drosophila/genetics ; Female ; Fundulidae/abnormalities/*genetics ; *Genes, Lethal ; *Genes, Recessive ; *Genome ; Likelihood Functions ; Male ; Mutation ; Phenotype ; Xenopus laevis/genetics ; Zebrafish/abnormalities/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-06-18
    Description: Mice homozygous for a single tyrosine mutation in LAT (linker for activation of T cells) exhibited an early block in T cell maturation but later developed a polyclonal lymphoproliferative disorder and signs of autoimmune disease. T cell antigen receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1) and of nuclear factor of activated T cells, calcium influx, interleukin-2 production, and cell death were reduced or abrogated in T cells from LAT mutant mice. In contrast, TCR-induced Erk activation was intact. These results identify a critical role for integrated PLC-gamma1 and Ras-Erk signaling through LAT in T cell development and homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sommers, Connie L -- Park, Cheung-Seog -- Lee, Jan -- Feng, Chiguang -- Fuller, Claudette L -- Grinberg, Alexander -- Hildebrand, Jay A -- Lacana, Emanuela -- Menon, Rashmi K -- Shores, Elizabeth W -- Samelson, Lawrence E -- Love, Paul E -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2040-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12065840" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antibodies, Antinuclear/blood ; Antigens, CD5/analysis ; Autoimmune Diseases/immunology ; CD4-Positive T-Lymphocytes/immunology/physiology ; Calcium/metabolism ; Calcium Signaling ; Carrier Proteins/*genetics/*physiology ; Cell Division ; Interleukin-2/biosynthesis ; Isoenzymes/*metabolism ; Lymphocyte Activation ; Lymphoproliferative Disorders/*etiology/immunology/pathology ; MAP Kinase Signaling System ; *Membrane Proteins ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinases/metabolism ; Phenotype ; Phospholipase C gamma ; Phosphoproteins/*genetics/*physiology ; Phosphorylation ; *Point Mutation ; Receptors, Antigen, T-Cell/immunology/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/immunology/physiology ; T-Lymphocytes/*immunology/physiology ; Thymus Gland/cytology/immunology/pathology ; Transcription Factors/metabolism ; Type C Phospholipases/*metabolism ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-10-26
    Description: Cerebral deposition of amyloid beta peptide (Abeta) is an early and critical feature of Alzheimer's disease. Abeta generation depends on proteolytic cleavage of the amyloid precursor protein (APP) by two unknown proteases: beta-secretase and gamma-secretase. These proteases are prime therapeutic targets. A transmembrane aspartic protease with all the known characteristics of beta-secretase was cloned and characterized. Overexpression of this protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta-secretase positions. Antisense inhibition of endogenous BACE messenger RNA decreased the amount of beta-secretase cleavage products, and purified BACE protein cleaved APP-derived substrates with the same sequence specificity as beta-secretase. Finally, the expression pattern and subcellular localization of BACE were consistent with that expected for beta-secretase. Future development of BACE inhibitors may prove beneficial for the treatment of Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassar, R -- Bennett, B D -- Babu-Khan, S -- Kahn, S -- Mendiaz, E A -- Denis, P -- Teplow, D B -- Ross, S -- Amarante, P -- Loeloff, R -- Luo, Y -- Fisher, S -- Fuller, J -- Edenson, S -- Lile, J -- Jarosinski, M A -- Biere, A L -- Curran, E -- Burgess, T -- Louis, J C -- Collins, F -- Treanor, J -- Rogers, G -- Citron, M -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):735-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen, Inc., One Amgen Center Drive, M/S 29-2-B, Thousand Oaks, CA 91320-1799, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531052" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/*enzymology ; Amino Acid Motifs ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Amyloid beta-Peptides/*biosynthesis ; Amyloid beta-Protein Precursor/*metabolism ; Animals ; Aspartic Acid Endopeptidases/chemistry/genetics/*isolation & ; purification/*metabolism ; Binding Sites ; Brain/enzymology/metabolism ; Cell Line ; Cloning, Molecular ; Endopeptidases ; Endosomes/enzymology ; Gene Expression ; Gene Library ; Golgi Apparatus/enzymology ; Humans ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Peptides/metabolism ; Protease Inhibitors/pharmacology ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-09-22
    Description: Landscape management practices that alter the degree of habitat fragmentation can significantly affect the genetic structure of animal populations. British red squirrels use "stepping stone" patches of habitat to move considerable distances through a fragmented habitat. Over the past few decades, the planting of a large conifer forest has connected groups of forest fragments in the north of England with those in southern Scotland. This "defragmentation" of the landscape has resulted in substantial genetic mixing of Scottish and Cumbrian genes in squirrel populations up to 100 kilometers from the site of the new forest. These results have implications for the conservation management of animal and plant species in fragmented landscapes such as those found in Britain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hale, M L -- Lurz, P W -- Shirley, M D -- Rushton, S -- Fuller, R M -- Wolff, K -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2246-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Agricultural and Environmental Science, Centre for Life Science Modelling, University of Newcastle, Newcastle-upon-Tyne, NE1 7RU, UK. m.l.hale@ncl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567136" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; England ; Environment ; *Genetic Variation ; Genetics, Population ; Genotype ; Sciuridae/*genetics/physiology ; Scotland ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-12-26
    Description: Stem cells generate many differentiated, short-lived cell types, such as blood, skin, and sperm, throughout adult life. Stem cells maintain a long-term capacity to divide, producing daughter cells that either self-renew or initiate differentiation. Although the surrounding microenvironment or "niche" influences stem cell fate decisions, few signals that emanate from the niche to specify stem cell self-renewal have been identified. Here we demonstrate that the apical hub cells in the Drosophila testis act as a cellular niche that supports stem cell self-renewal. Hub cells express the ligand Unpaired (Upd), which activates the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway in adjacent germ cells to specify self-renewal and continual maintenance of the germ line stem cell population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiger, A A -- Jones, D L -- Schulz, C -- Rogers, M B -- Fuller, M T -- GM07790-22/GM/NIGMS NIH HHS/ -- HD07493/HD/NICHD NIH HHS/ -- P01-DK53074/DK/NIDDK NIH HHS/ -- R01 GM078176/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2542-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752574" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cues ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila/cytology/embryology/genetics/*physiology ; Drosophila Proteins/*metabolism ; Germ Cells/*physiology ; Glycoproteins/*metabolism ; Janus Kinases ; Ligands ; Male ; Mutation ; Protein-Tyrosine Kinases/genetics/*metabolism ; STAT Transcription Factors ; Signal Transduction ; Spermatocytes/cytology/physiology ; Spermatogenesis ; Stem Cells/cytology/*physiology ; Testis/cytology/metabolism ; Trans-Activators/genetics/*metabolism ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-10-17
    Description: Asymmetric division of adult stem cells generates one self-renewing stem cell and one differentiating cell, thereby maintaining tissue homeostasis. A decline in stem cell function has been proposed to contribute to tissue ageing, although the underlying mechanism is poorly understood. Here we show that changes in the stem cell orientation with respect to the niche during ageing contribute to the decline in spermatogenesis in the male germ line of Drosophila. Throughout the cell cycle, centrosomes in germline stem cells (GSCs) are oriented within their niche and this ensures asymmetric division. We found that GSCs containing misoriented centrosomes accumulate with age and that these GSCs are arrested or delayed in the cell cycle. The cell cycle arrest is transient, and GSCs appear to re-enter the cell cycle on correction of centrosome orientation. On the basis of these findings, we propose that cell cycle arrest associated with centrosome misorientation functions as a mechanism to ensure asymmetric stem cell division, and that the inability of stem cells to maintain correct orientation during ageing contributes to the decline in spermatogenesis. We also show that some of the misoriented GSCs probably originate from dedifferentiation of spermatogonia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Jun -- Turkel, Nezaket -- Hemati, Nahid -- Fuller, Margaret T -- Hunt, Alan J -- Yamashita, Yukiko M -- P01 DK053074/DK/NIDDK NIH HHS/ -- P01 DK053074-060004/DK/NIDDK NIH HHS/ -- P01 DK53074/DK/NIDDK NIH HHS/ -- R01 GM072006/GM/NIGMS NIH HHS/ -- R01 GM072006-05/GM/NIGMS NIH HHS/ -- R01 GM080501/GM/NIGMS NIH HHS/ -- R01 GM080501-01/GM/NIGMS NIH HHS/ -- R01 GM080501-02/GM/NIGMS NIH HHS/ -- R01 GM086481/GM/NIGMS NIH HHS/ -- R01 GM086481-01/GM/NIGMS NIH HHS/ -- R01GM072006/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Dec 4;456(7222):599-604. doi: 10.1038/nature07386. Epub 2008 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18923395" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Animals ; Cell Dedifferentiation ; Cell Division ; Centrosome/*metabolism ; Drosophila melanogaster/*cytology ; Male ; Mitosis ; *Spermatogenesis ; Spermatozoa/*cytology ; Stem Cells/*cytology ; Testis/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-09
    Description: Proper partitioning of the contents of a cell between two daughters requires integration of spatial and temporal cues. The anaphase array of microtubules that self-organize at the spindle midzone contributes to positioning the cell-division plane midway between the segregating chromosomes. How this signalling occurs over length scales of micrometres, from the midzone to the cell cortex, is not known. Here we examine the anaphase dynamics of protein phosphorylation by aurora B kinase, a key mitotic regulator, using fluorescence resonance energy transfer (FRET)-based sensors in living HeLa cells and immunofluorescence of native aurora B substrates. Quantitative analysis of phosphorylation dynamics, using chromosome- and centromere-targeted sensors, reveals that changes are due primarily to position along the division axis rather than time. These dynamics result in the formation of a spatial phosphorylation gradient early in anaphase that is centred at the spindle midzone. This gradient depends on aurora B targeting to a subpopulation of microtubules that activate it. Aurora kinase activity organizes the targeted microtubules to generate a structure-based feedback loop. We propose that feedback between aurora B kinase activation and midzone microtubules generates a gradient of post-translational marks that provides spatial information for events in anaphase and cytokinesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724008/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724008/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuller, Brian G -- Lampson, Michael A -- Foley, Emily A -- Rosasco-Nitcher, Sara -- Le, Kim V -- Tobelmann, Page -- Brautigan, David L -- Stukenberg, P Todd -- Kapoor, Tarun M -- R01 GM063045/GM/NIGMS NIH HHS/ -- R01 GM063045-08/GM/NIGMS NIH HHS/ -- R01 GM065933/GM/NIGMS NIH HHS/ -- R01 GM065933-06/GM/NIGMS NIH HHS/ -- R01 GM083988/GM/NIGMS NIH HHS/ -- R01 GM083988-01/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jun 19;453(7198):1132-6. doi: 10.1038/nature06923. Epub 2008 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18463638" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase/*physiology ; Animals ; Aurora Kinase B ; Aurora Kinases ; *Cell Compartmentation ; Centromere/metabolism ; Chromatin/metabolism ; Enzyme Activation ; Fluorescence Resonance Energy Transfer ; HeLa Cells ; Humans ; Intracellular Space/*metabolism ; Microtubules/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Spindle Apparatus/metabolism ; Xenopus
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-06-10
    Description: An optimal search theory, the so-called Levy-flight foraging hypothesis, predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey. Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned. Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis, supporting the contention that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humphries, Nicolas E -- Queiroz, Nuno -- Dyer, Jennifer R M -- Pade, Nicolas G -- Musyl, Michael K -- Schaefer, Kurt M -- Fuller, Daniel W -- Brunnschweiler, Juerg M -- Doyle, Thomas K -- Houghton, Jonathan D R -- Hays, Graeme C -- Jones, Catherine S -- Noble, Leslie R -- Wearmouth, Victoria J -- Southall, Emily J -- Sims, David W -- England -- Nature. 2010 Jun 24;465(7301):1066-9. doi: 10.1038/nature09116. Epub 2010 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20531470" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Identification Systems ; Animals ; Biological Evolution ; *Ecosystem ; Exploratory Behavior/physiology ; Fishes/*physiology ; *Food ; Likelihood Functions ; Locomotion/*physiology ; Marine Biology ; *Models, Biological ; Perciformes/physiology ; Predatory Behavior/*physiology ; *Seawater ; Sharks/physiology ; Swimming/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-04-21
    Description: Drosophila male and female germline stem cells (GSCs) are sustained by niches and regulatory pathways whose common principles serve as models for understanding mammalian stem cells. Despite striking cellular and genetic similarities that suggest a common evolutionary origin, however, male and female GSCs also display important differences. Comparing these two stem cells and their niches in detail is likely to reveal how a common heritage has been adapted to the differing requirements of male and female gamete production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuller, Margaret T -- Spradling, Allan C -- P01DK53074/DK/NIDDK NIH HHS/ -- R01GM61986/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):402-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446390" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology/physiology ; Animals ; Cell Adhesion ; Cell Differentiation ; Cell Division ; Centrosome/physiology ; Drosophila/*cytology/*physiology ; Drosophila Proteins/physiology ; Female ; Germ Cells/*cytology/physiology ; Male ; Ovary/cytology ; Sex Characteristics ; Signal Transduction ; Testis/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-01-27
    Description: Adult stem cells often divide asymmetrically to produce one self-renewed stem cell and one differentiating cell, thus maintaining both populations. The asymmetric outcome of stem cell divisions can be specified by an oriented spindle and local self-renewal signals from the stem cell niche. Here we show that developmentally programmed asymmetric behavior and inheritance of mother and daughter centrosomes underlies the stereotyped spindle orientation and asymmetric outcome of stem cell divisions in the Drosophila male germ line. The mother centrosome remains anchored near the niche while the daughter centrosome migrates to the opposite side of the cell before spindle formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamashita, Yukiko M -- Mahowald, Anthony P -- Perlin, Julie R -- Fuller, Margaret T -- P01 DK053074/DK/NIDDK NIH HHS/ -- P01 DK53074/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA. yukikomy@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255513" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/ultrastructure ; Animals ; Cell Differentiation ; *Cell Division ; Centrioles/physiology ; Centrosome/*physiology/ultrastructure ; Drosophila Proteins/analysis/genetics ; Drosophila melanogaster ; Germ Cells/*cytology/physiology ; Interphase ; Male ; Microtubules/physiology/ultrastructure ; Recombinant Fusion Proteins/analysis ; Spindle Apparatus/physiology ; Stem Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...