ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-24
    Description: Author(s): J. L. Zeng, L. P. Liu, P. F. Liu, and J. M. Yuan The contribution to the ionization cross section of ionization-excitation processes by electron impact is usually negligibly small for low- and medium-Z elements. We demonstrate here, however, that for heavy atomic ions with the outermost shell being nd (n=4,5) the ionization-excitation processes pl... [Phys. Rev. A 90, 044701] Published Thu Oct 23, 2014
    Keywords: Atomic and molecular collisions and interactions
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-21
    Description: Author(s): X. Ma, R. T. Zhang, S. F. Zhang, X. L. Zhu, W. T. Feng, D. L. Guo, B. Li, H. P. Liu, C. Y. Li, J. G. Wang, S. C. Yan, P. J. Zhang, and Q. Wang Electron emission from the single-electron capture with simultaneous single ionization in 30 keV/u He 2+ on argon was investigated using a reaction microscope, providing the electron energy spectra and momentum distributions. Intensive peaks for electrons with near-zero kinetic energies have been obs... [Phys. Rev. A 83, 052707] Published Fri May 20, 2011
    Keywords: Atomic and molecular collisions and interactions
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-29
    Description: Author(s): P. F. Liu, Y. P. Liu, J. L. Zeng, and J. M. Yuan The cross sections of electron impact with Sn13+ resulting in the production of Sn13+-Sn16+ are investigated theoretically by using the fine-structure-level distorted-wave approximation from the threshold to 4000 eV. The electron-impact excitation, ionization, and resonant excitation processes are i... [Phys. Rev. A 89, 042704] Published Mon Apr 28, 2014
    Keywords: Atomic and molecular collisions and interactions
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-15
    Description: Author(s): R. T. Zhang, X. Ma, S. F. Zhang, X. L. Zhu, W. T. Feng, D. L. Guo, Y. Gao, B. Li, D. B. Qian, H. P. Liu, S. Yan, and P. Zhang Electron emissions are studied for the double-electron capture with simultaneous single ionization process in 30 keV/u He2+-Ar atom collision using the reaction microscope technique. Double-differential cross sections have been obtained for emission angles of 0°, 20°, 45°, 90°, 128°, and 175° and el... [Phys. Rev. A 89, 032708] Published Fri Mar 14, 2014
    Keywords: Atomic and molecular collisions and interactions
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-06-29
    Description: Axonal regeneration in the adult central nervous system (CNS) is limited by two proteins in myelin, Nogo and myelin-associated glycoprotein (MAG). The receptor for Nogo (NgR) has been identified as an axonal glycosyl-phosphatidyl-inositol (GPI)-anchored protein, whereas the MAG receptor has remained elusive. Here, we show that MAG binds directly, with high affinity, to NgR. Cleavage of GPI-linked proteins from axons protects growth cones from MAG-induced collapse, and dominant-negative NgR eliminates MAG inhibition of neurite outgrowth. MAG-resistant embryonic neurons are rendered MAG-sensitive by expression of NgR. MAG and Nogo-66 activate NgR independently and serve as redundant NgR ligands that may limit axonal regeneration after CNS injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Betty P -- Fournier, Alyson -- GrandPre, Tadzia -- Strittmatter, Stephen M -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1190-3. Epub 2002 Jun 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12089450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Binding Sites ; COS Cells ; Chick Embryo ; Cloning, Molecular ; GPI-Linked Proteins ; Ganglia, Spinal/cytology/embryology/metabolism ; Gene Library ; Ligands ; Mice ; Myelin Proteins/chemistry/metabolism/pharmacology ; Myelin-Associated Glycoprotein/chemistry/genetics/*metabolism ; Nerve Regeneration ; Neurites/*physiology ; Neurons/metabolism ; Peptide Fragments/metabolism/pharmacology ; Phosphatidylinositol Diacylglycerol-Lyase ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Sialic Acids/metabolism ; Transfection ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-10
    Description: A method was developed for selectively isolating genes from localized regions of the human genome that are contained in interspecific hybrid cells. Complementary human DNA was prepared from a human-rodent somatic cell hybrid that contained less than 1% human DNA, by using consensus 5' intron splice sequences as primers. These primers would select immature, unspliced messenger RNA (still retaining species-specific repeat sequences) as templates. Screening a derived complementary DNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes--single copy sequences that hybridized to discrete bands on Northern (RNA) blots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, P -- Legerski, R -- Siciliano, M J -- GM19436/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 10;246(4931):813-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blotting, Northern ; Blotting, Southern ; Chromosome Mapping ; Chromosomes, Human, Pair 19 ; Cloning, Molecular ; Cricetinae ; DNA/biosynthesis/genetics/*isolation & purification ; Humans ; *Hybrid Cells ; Introns ; Nucleic Acid Hybridization ; RNA/genetics ; Repetitive Sequences, Nucleic Acid ; Restriction Mapping ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-07-03
    Description: On activation by receptors, the ubiquitously expressed class IA isoforms (p110alpha and p110beta) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110alpha in growth factor and insulin signalling. To probe for distinct functions of p110beta, we constructed conditional knockout mice. Here we show that ablation of p110beta in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110beta in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110beta also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110beta-null cells with a wild-type or kinase-dead allele of p110beta demonstrated that p110beta possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110beta was required for G-protein-coupled receptor signalling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumour formation induced by Pten loss, ablation of p110beta (also known as Pik3cb), but not that of p110alpha (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110beta, and strongly indicate the kinase-dependent functions of p110beta as a promising target in cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Shidong -- Liu, Zhenning -- Zhang, Sen -- Liu, Pixu -- Zhang, Lei -- Lee, Sang Hyun -- Zhang, Jing -- Signoretti, Sabina -- Loda, Massimo -- Roberts, Thomas M -- Zhao, Jean J -- P01 CA050661/CA/NCI NIH HHS/ -- P01 CA050661-200001/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-06A1/CA/NCI NIH HHS/ -- P50 CA089393/CA/NCI NIH HHS/ -- P50 CA089393-08S1/CA/NCI NIH HHS/ -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-05/CA/NCI NIH HHS/ -- R01 CA030002/CA/NCI NIH HHS/ -- R01 CA030002-27/CA/NCI NIH HHS/ -- R01 CA134502/CA/NCI NIH HHS/ -- R01 CA134502-01/CA/NCI NIH HHS/ -- England -- Nature. 2008 Aug 7;454(7205):776-9. doi: 10.1038/nature07091. Epub 2008 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18594509" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Proliferation/drug effects ; *Cell Transformation, Neoplastic ; Epidermal Growth Factor/pharmacology ; Fibroblasts/cytology ; Glucose/*metabolism ; Glucose Intolerance/enzymology/genetics ; Homeostasis ; Humans ; Insulin/*metabolism/pharmacology ; Insulin Resistance/genetics ; Liver/enzymology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; PTEN Phosphohydrolase/deficiency/genetics ; Phosphatidylinositol 3-Kinases/deficiency/genetics/*metabolism ; Phosphorylation/drug effects ; Prostatic Neoplasms/enzymology/genetics/pathology ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-30
    Description: The recognition of specific DNA sequences by proteins is thought to depend on two types of mechanism: one that involves the formation of hydrogen bonds with specific bases, primarily in the major groove, and one involving sequence-dependent deformations of the DNA helix. By comprehensively analysing the three-dimensional structures of protein-DNA complexes, here we show that the binding of arginine residues to narrow minor grooves is a widely used mode for protein-DNA recognition. This readout mechanism exploits the phenomenon that narrow minor grooves strongly enhance the negative electrostatic potential of the DNA. The nucleosome core particle offers a prominent example of this effect. Minor-groove narrowing is often associated with the presence of A-tracts, AT-rich sequences that exclude the flexible TpA step. These findings indicate that the ability to detect local variations in DNA shape and electrostatic potential is a general mechanism that enables proteins to use information in the minor groove, which otherwise offers few opportunities for the formation of base-specific hydrogen bonds, to achieve DNA-binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793086/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793086/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohs, Remo -- West, Sean M -- Sosinsky, Alona -- Liu, Peng -- Mann, Richard S -- Honig, Barry -- GM54510/GM/NIGMS NIH HHS/ -- R01 GM030518/GM/NIGMS NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 CA121852-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 29;461(7268):1248-53. doi: 10.1038/nature08473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biophysics, Columbia University, 1130 Saint Nicholas Avenue, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865164" target="_blank"〉PubMed〈/a〉
    Keywords: AT Rich Sequence/genetics ; Animals ; Arginine/metabolism ; Base Sequence ; DNA/*chemistry/genetics/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Databases, Factual ; Hydrogen Bonding ; Lysine ; *Nucleic Acid Conformation ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Saccharomyces cerevisiae ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-03-03
    Description: Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758996/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758996/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woltjen, Knut -- Michael, Iacovos P -- Mohseni, Paria -- Desai, Ridham -- Mileikovsky, Maria -- Hamalainen, Riikka -- Cowling, Rebecca -- Wang, Wei -- Liu, Pentao -- Gertsenstein, Marina -- Kaji, Keisuke -- Sung, Hoon-Ki -- Nagy, Andras -- 077186/Wellcome Trust/United Kingdom -- G0700672/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Apr 9;458(7239):766-70. doi: 10.1038/nature07863. Epub 2009 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19252478" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/*genetics ; DNA Transposable Elements ; Fibroblasts/*cytology/*physiology/virology ; Gene Order ; Gene Transfer Techniques ; Genetic Vectors/*genetics ; Humans ; Mice ; Mice, Nude ; Pluripotent Stem Cells/*physiology ; Sequence Alignment ; Transcription Factors/genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-26
    Description: Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from female-enriched multiplex families with severe disease, enhancing the detection of key autism genes in modest numbers of cases. Here we show the use of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated delta-catenin protein (CTNND2) in female-enriched multiplex families and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wild-type and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as female-enriched multiplex families, are of innate value in multifactorial disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, Tychele N -- Sharma, Kamal -- Oh, Edwin C -- Liu, Yangfan P -- Collins, Ryan L -- Sosa, Maria X -- Auer, Dallas R -- Brand, Harrison -- Sanders, Stephan J -- Moreno-De-Luca, Daniel -- Pihur, Vasyl -- Plona, Teri -- Pike, Kristen -- Soppet, Daniel R -- Smith, Michael W -- Cheung, Sau Wai -- Martin, Christa Lese -- State, Matthew W -- Talkowski, Michael E -- Cook, Edwin -- Huganir, Richard -- Katsanis, Nicholas -- Chakravarti, Aravinda -- 1U24MH081810/MH/NIMH NIH HHS/ -- 5R25MH071584-07/MH/NIMH NIH HHS/ -- MH095867/MH/NIMH NIH HHS/ -- MH19961-14/MH/NIMH NIH HHS/ -- R00 MH095867/MH/NIMH NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 MH060007/MH/NIMH NIH HHS/ -- R01 MH074090/MH/NIMH NIH HHS/ -- R01MH074090/MH/NIMH NIH HHS/ -- R01MH081754/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):51-6. doi: 10.1038/nature14186. Epub 2015 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Predoctoral Training Program in Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA. ; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA. ; Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA. ; 1] Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA [2] Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158, USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Psychiatry, Yale University, New Haven, Connecticut 06511, USA. ; Leidos Biomedical Research, Inc., Frederick, Maryland 21702, USA. ; National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Autism &Developmental Medicine Institute, Geisinger Health System, Lewisburg, Pennsylvania 17837, USA. ; University of Illinois at Chicago, Chicago, Illinois 60608, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25807484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*genetics/*metabolism ; Brain/embryology/*metabolism ; Catenins/*deficiency/*genetics/metabolism ; Cells, Cultured ; Chromatin/genetics/metabolism ; DNA Copy Number Variations/genetics ; Embryo, Mammalian/cytology/metabolism ; Exome/genetics ; Female ; Gene Expression ; Gene Expression Regulation, Developmental ; Hippocampus/pathology ; Humans ; Male ; Mice ; Models, Genetic ; Multifactorial Inheritance/genetics ; Mutation, Missense ; Nerve Net ; Neurons/cytology/metabolism ; Sex Characteristics ; Zebrafish/embryology/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...