ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-22
    Description: Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528969/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528969/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Najm, Fadi J -- Madhavan, Mayur -- Zaremba, Anita -- Shick, Elizabeth -- Karl, Robert T -- Factor, Daniel C -- Miller, Tyler E -- Nevin, Zachary S -- Kantor, Christopher -- Sargent, Alex -- Quick, Kevin L -- Schlatzer, Daniela M -- Tang, Hong -- Papoian, Ruben -- Brimacombe, Kyle R -- Shen, Min -- Boxer, Matthew B -- Jadhav, Ajit -- Robinson, Andrew P -- Podojil, Joseph R -- Miller, Stephen D -- Miller, Robert H -- Tesar, Paul J -- F30 CA183510/CA/NCI NIH HHS/ -- F30CA183510/CA/NCI NIH HHS/ -- NS026543/NS/NINDS NIH HHS/ -- NS030800/NS/NINDS NIH HHS/ -- NS085246/NS/NINDS NIH HHS/ -- P30 CA043703/CA/NCI NIH HHS/ -- P30CA043703/CA/NCI NIH HHS/ -- R01 NS026543/NS/NINDS NIH HHS/ -- R01 NS030800/NS/NINDS NIH HHS/ -- R21 NS085246/NS/NINDS NIH HHS/ -- T32 GM007250/GM/NIGMS NIH HHS/ -- T32 GM008056/GM/NIGMS NIH HHS/ -- T32GM008056/GM/NIGMS NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Jun 11;522(7555):216-20. doi: 10.1038/nature14335. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; 1] Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA [2] Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA [3] Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; PerkinElmer, 940 Winter Street, Waltham, Massachusetts 02451, USA. ; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; Drug Discovery Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA. ; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA. ; Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA. ; 1] Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA [2] Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects ; Cerebellum/drug effects/metabolism/pathology ; Clobetasol/*pharmacology ; Demyelinating Diseases/drug therapy/metabolism/pathology ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental/drug therapy/metabolism/pathology ; Female ; Germ Layers/drug effects/metabolism/pathology ; Humans ; Lysophosphatidylcholines ; MAP Kinase Signaling System ; Male ; Mice ; Miconazole/*pharmacology ; Mitogen-Activated Protein Kinases/metabolism ; Multiple Sclerosis/*drug therapy/*metabolism/pathology ; Myelin Sheath/*drug effects/*metabolism ; Oligodendroglia/cytology/drug effects/metabolism ; Phenotype ; Pluripotent Stem Cells/cytology/*drug effects/metabolism ; Receptors, Glucocorticoid/metabolism ; Regeneration/drug effects ; Tissue Culture Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-21
    Description: Stabilization of the hypoxia-inducible factor 1 (HIF-1) increases life span and health span in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in Caenorhabditis elegans through a cell nonautonomous signal to the intestine, which results in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This prolongevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine. Intestinal FMO-2 is also activated by dietary restriction (DR) and is necessary for DR-mediated life-span extension, which suggests that this enzyme represents a point of convergence for two distinct longevity pathways. FMOs are conserved in eukaryotes and induced by multiple life span-extending interventions in mice, which suggests that these enzymes may play a critical role in promoting health and longevity across phyla.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leiser, Scott F -- Miller, Hillary -- Rossner, Ryan -- Fletcher, Marissa -- Leonard, Alison -- Primitivo, Melissa -- Rintala, Nicholas -- Ramos, Fresnida J -- Miller, Dana L -- Kaeberlein, Matt -- P30AG013280/AG/NIA NIH HHS/ -- R00AGA0033050/PHS HHS/ -- R01AG038518/AG/NIA NIH HHS/ -- T32AG000057/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1375-8. doi: 10.1126/science.aac9257. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Pathology, University of Washington, Seattle, WA 98195, USA. kaeber@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586189" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Caenorhabditis elegans/genetics/metabolism/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism/*physiology ; Diet ; Intestines/*enzymology ; Longevity/genetics/*physiology ; Mice ; Neurons/*metabolism ; Oxygenases/genetics/*physiology ; Protein Stability ; RNA Interference ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/*metabolism ; Tryptophan Hydroxylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-27
    Description: The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ke -- Donnelly, Christopher J -- Haeusler, Aaron R -- Grima, Jonathan C -- Machamer, James B -- Steinwald, Peter -- Daley, Elizabeth L -- Miller, Sean J -- Cunningham, Kathleen M -- Vidensky, Svetlana -- Gupta, Saksham -- Thomas, Michael A -- Hong, Ingie -- Chiu, Shu-Ling -- Huganir, Richard L -- Ostrow, Lyle W -- Matunis, Michael J -- Wang, Jiou -- Sattler, Rita -- Lloyd, Thomas E -- Rothstein, Jeffrey D -- CA009110/CA/NCI NIH HHS/ -- K99 NS091486/NS/NINDS NIH HHS/ -- NS089616/NS/NINDS NIH HHS/ -- NS091046/NS/NINDS NIH HHS/ -- P01 AG012992/AG/NIA NIH HHS/ -- P40OD018537/OD/NIH HHS/ -- R01 NS074324/NS/NINDS NIH HHS/ -- R01 NS082563/NS/NINDS NIH HHS/ -- R01 NS085207/NS/NINDS NIH HHS/ -- R01 NS089616/NS/NINDS NIH HHS/ -- R01-GM084947/GM/NIGMS NIH HHS/ -- R01NS085207/NS/NINDS NIH HHS/ -- RC2 NS069395/NS/NINDS NIH HHS/ -- T32 CA009110/CA/NCI NIH HHS/ -- U24 NS078736/NS/NINDS NIH HHS/ -- U54 NS091046/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Sep 3;525(7567):56-61. doi: 10.1038/nature14973. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, School of Medicine, Johns Hopkins University, Maryland 21205, USA. ; Brain Science Institute, School of Medicine, Johns Hopkins University, Maryland 21205, USA. ; Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Maryland 21205, USA. ; Department of Neuroscience, School of Medicine, Johns Hopkins University, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308891" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus/*genetics ; Amyotrophic Lateral Sclerosis/genetics/pathology ; Animals ; Brain/metabolism/pathology ; Cell Nucleus/*metabolism ; DNA Repeat Expansion/*genetics ; Drosophila Proteins/metabolism ; Drosophila melanogaster/cytology/metabolism ; Female ; Frontotemporal Dementia/genetics/pathology ; G-Quadruplexes ; GTPase-Activating Proteins/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Neurons/metabolism/pathology ; Nuclear Pore/chemistry/metabolism ; Nuclear Proteins/metabolism ; Oligonucleotides, Antisense/genetics ; Open Reading Frames/*genetics ; Proteins/*genetics ; RNA/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-28
    Description: Mitochondria are involved in a variety of cellular functions, including ATP production, amino acid and lipid biogenesis and breakdown, signalling and apoptosis. Mitochondrial dysfunction has been linked to neurodegenerative diseases, cancer and ageing. Although transcriptional mechanisms that regulate mitochondrial abundance are known, comparatively little is known about how mitochondrial function is regulated. Here we identify the metabolite stearic acid (C18:0) and human transferrin receptor 1 (TFR1; also known as TFRC) as mitochondrial regulators. We elucidate a signalling pathway whereby C18:0 stearoylates TFR1, thereby inhibiting its activation of JNK signalling. This leads to reduced ubiquitination of mitofusin via HUWE1, thereby promoting mitochondrial fusion and function. We find that animal cells are poised to respond to both increases and decreases in C18:0 levels, with increased C18:0 dietary intake boosting mitochondrial fusion in vivo. Intriguingly, dietary C18:0 supplementation can counteract the mitochondrial dysfunction caused by genetic defects such as loss of the Parkinson's disease genes Pink or Parkin in Drosophila. This work identifies the metabolite C18:0 as a signalling molecule regulating mitochondrial function in response to diet.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561519/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561519/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Senyilmaz, Deniz -- Virtue, Sam -- Xu, Xiaojun -- Tan, Chong Yew -- Griffin, Julian L -- Miller, Aubry K -- Vidal-Puig, Antonio -- Teleman, Aurelio A -- BB/H002731/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_PC_13030/Medical Research Council/United Kingdom -- MC_UP_A090_1006/Medical Research Council/United Kingdom -- MC_UU_12012/2/Medical Research Council/United Kingdom -- RG/12/13/29853/British Heart Foundation/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Sep 3;525(7567):124-8. doi: 10.1038/nature14601. Epub 2015 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK. ; The Department of Biochemistry, Tennis Court Road, Cambridge CB2 1GA, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26214738" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/deficiency ; Animals ; Antigens, CD/*metabolism ; Diet ; Drosophila Proteins/deficiency/genetics/metabolism ; Drosophila melanogaster/*cytology/drug effects/genetics/*metabolism ; HeLa Cells ; Humans ; JNK Mitogen-Activated Protein Kinases/metabolism ; Larva/drug effects/genetics/metabolism ; Membrane Proteins/metabolism ; Mitochondria/drug effects/genetics/*metabolism/pathology ; Mitochondrial Dynamics/drug effects ; Receptors, Transferrin/*metabolism ; Signal Transduction/drug effects ; Stearic Acids/administration & dosage/*metabolism/pharmacology ; Ubiquitin-Protein Ligases/deficiency/genetics/metabolism ; Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-03
    Description: The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here we show that repair by alternative NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify polymerase theta (Poltheta; encoded by Polq in mice) as a crucial alternative NHEJ factor in mammalian cells. Polq inhibition suppresses alternative NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that loss of Polq in mice results in increased rates of homology-directed repair, evident by recombination of dysfunctional telomeres and accumulation of RAD51 at double-stranded breaks. Lastly, we show that depletion of Poltheta has a synergistic effect on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumours carrying mutations in homology-directed repair genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mateos-Gomez, Pedro A -- Gong, Fade -- Nair, Nidhi -- Miller, Kyle M -- Lazzerini-Denchi, Eros -- Sfeir, Agnel -- AG038677/AG/NIA NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 AG038677/AG/NIA NIH HHS/ -- England -- Nature. 2015 Feb 12;518(7538):254-7. doi: 10.1038/nature14157. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000, Austin, Texas 78712, USA. ; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642960" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Death/genetics ; Cell Line ; Chromosome Aberrations ; Chromosomes, Mammalian/genetics/*metabolism ; *DNA Breaks, Double-Stranded ; *DNA End-Joining Repair ; DNA-Directed DNA Polymerase/deficiency/*metabolism ; Genes, BRCA1 ; Genes, BRCA2 ; HeLa Cells ; Humans ; Mice ; Poly(ADP-ribose) Polymerases/genetics/metabolism ; Rad51 Recombinase/metabolism ; *Recombination, Genetic/genetics ; Recombinational DNA Repair/genetics ; Telomere/*genetics/*metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-27
    Description: The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631399/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631399/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freibaum, Brian D -- Lu, Yubing -- Lopez-Gonzalez, Rodrigo -- Kim, Nam Chul -- Almeida, Sandra -- Lee, Kyung-Ha -- Badders, Nisha -- Valentine, Marc -- Miller, Bruce L -- Wong, Philip C -- Petrucelli, Leonard -- Kim, Hong Joo -- Gao, Fen-Biao -- Taylor, J Paul -- AG019724/AG/NIA NIH HHS/ -- N079725/PHS HHS/ -- NS079725/NS/NINDS NIH HHS/ -- P01 AG019724/AG/NIA NIH HHS/ -- R01 NS057553/NS/NINDS NIH HHS/ -- R01 NS079725/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 3;525(7567):129-33. doi: 10.1038/nature14974. Epub 2015 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California 94158, USA. ; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, USA. ; Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26308899" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus/*genetics ; Amyotrophic Lateral Sclerosis/genetics/pathology ; Animals ; Animals, Genetically Modified ; DNA Repeat Expansion/*genetics ; Drosophila melanogaster/*cytology/genetics/*metabolism ; Eye/metabolism ; Female ; Frontotemporal Dementia/genetics/pathology ; HeLa Cells ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Male ; Muscles/cytology/metabolism ; Neurons/cytology/metabolism ; Nuclear Pore/genetics/metabolism/pathology ; Open Reading Frames/*genetics ; Phenotype ; Protein Biosynthesis ; Proteins/*genetics ; RNA/genetics/metabolism ; RNA Transport/*genetics ; Salivary Glands/cytology/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-27
    Description: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waddell, Nicola -- Pajic, Marina -- Patch, Ann-Marie -- Chang, David K -- Kassahn, Karin S -- Bailey, Peter -- Johns, Amber L -- Miller, David -- Nones, Katia -- Quek, Kelly -- Quinn, Michael C J -- Robertson, Alan J -- Fadlullah, Muhammad Z H -- Bruxner, Tim J C -- Christ, Angelika N -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourse, Craig -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Wilson, Peter J -- Markham, Emma -- Cloonan, Nicole -- Anderson, Matthew J -- Fink, J Lynn -- Holmes, Oliver -- Kazakoff, Stephen H -- Leonard, Conrad -- Newell, Felicity -- Poudel, Barsha -- Song, Sarah -- Taylor, Darrin -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Lee, Hong C -- Jones, Marc D -- Nagrial, Adnan M -- Humphris, Jeremy -- Chantrill, Lorraine A -- Chin, Venessa -- Steinmann, Angela M -- Mawson, Amanda -- Humphrey, Emily S -- Colvin, Emily K -- Chou, Angela -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Pettitt, Jessica A -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Jamieson, Nigel B -- Graham, Janet S -- Niclou, Simone P -- Bjerkvig, Rolf -- Grutzmann, Robert -- Aust, Daniela -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Falconi, Massimo -- Zamboni, Giuseppe -- Tortora, Giampaolo -- Tempero, Margaret A -- Australian Pancreatic Cancer Genome Initiative -- Gill, Anthony J -- Eshleman, James R -- Pilarsky, Christian -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Pearson, John V -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Wellcome Trust/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- C596/A18076/Cancer Research UK/United Kingdom -- P30 CA006973/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA62924/CA/NCI NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):495-501. doi: 10.1038/nature14169.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. ; 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Norlux Neuro-Oncology Laboratory, CRP-Sante Luxembourg, 84 Val Fleuri, L-1526, Luxembourg. ; Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway. ; Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy. ; Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719666" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics ; Animals ; Carcinoma, Pancreatic Ductal/drug therapy/genetics ; *DNA Mutational Analysis ; DNA Repair/genetics ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Markers/genetics ; Genome, Human/*genetics ; Genomic Instability/genetics ; *Genomics ; Genotype ; Humans ; Mice ; Mutation/*genetics ; Pancreatic Neoplasms/classification/drug therapy/*genetics ; Platinum/pharmacology ; Point Mutation/genetics ; Poly(ADP-ribose) Polymerase Inhibitors ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-26
    Description: Ecological partnerships, or mutualisms, are globally widespread, sustaining agriculture and biodiversity. Mutualisms evolve through the matching of functional traits between partners, such as tongue length of pollinators and flower tube depth of plants. Long-tongued pollinators specialize on flowers with deep corolla tubes, whereas shorter-tongued pollinators generalize across tube lengths. Losses of functional guilds because of shifts in global climate may disrupt mutualisms and threaten partner species. We found that in two alpine bumble bee species, decreases in tongue length have evolved over 40 years. Co-occurring flowers have not become shallower, nor are small-flowered plants more prolific. We argue that declining floral resources because of warmer summers have favored generalist foraging, leading to a mismatch between shorter-tongued bees and the longer-tubed plants they once pollinated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller-Struttmann, Nicole E -- Geib, Jennifer C -- Franklin, James D -- Kevan, Peter G -- Holdo, Ricardo M -- Ebert-May, Diane -- Lynn, Austin M -- Kettenbach, Jessica A -- Hedrick, Elizabeth -- Galen, Candace -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1541-4. doi: 10.1126/science.aab0868. Epub 2015 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biological Sciences Department, Natural Sciences Building Rm NS247, SUNY College at Old Westbury, Old Westbury, NY 11568, USA. Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA. nmillstrutt@gmail.com. ; Department of Biology, Appalachian State University, Boone, NC 28608, USA. ; Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA. ; School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1. ; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. ; Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA. Department of Biological Sciences, Zoology Program, North Carolina State University, Raleigh, NC 27695, USA. ; Department of Life and Physical Sciences, Lincoln University, Jefferson City, MO 65101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/anatomy & histology/*physiology ; Biological Evolution ; *Climate Change ; Flowers/anatomy & histology/*physiology ; *Pollination ; *Symbiosis ; Tongue/anatomy & histology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-05
    Description: During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells are unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8(+) T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditionally depleted mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8(+) T cell recruitment and effector functions. Collectively, these results suggest that neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8(+) T cell migration and localization in influenza-infected tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Kihong -- Hyun, Young-Min -- Lambert-Emo, Kris -- Capece, Tara -- Bae, Seyeon -- Miller, Richard -- Topham, David J -- Kim, Minsoo -- AI102851/AI/NIAID NIH HHS/ -- HHSN272201400005C/PHS HHS/ -- HL087088/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):aaa4352. doi: 10.1126/science.aaa4352.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA. ; Department of Pharmacology, Northwestern University, Chicago, IL, USA. ; Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA. minsoo_kim@urmc.rochester.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Chemokine CXCL12/*immunology/pharmacology ; Chemotaxis/*immunology ; Heterocyclic Compounds/pharmacology ; Influenza A virus/*immunology ; Lung/immunology/virology ; Male ; Matrix Metalloproteinase 2/immunology ; Matrix Metalloproteinase 9/immunology ; Mice ; Mice, Inbred C57BL ; Neutropenia/immunology ; Neutrophils/*immunology/virology ; Orthomyxoviridae Infections/*immunology ; Trachea/*immunology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-20
    Description: During flexible behavior, multiple brain regions encode sensory inputs, the current task, and choices. It remains unclear how these signals evolve. We simultaneously recorded neuronal activity from six cortical regions [middle temporal area (MT), visual area four (V4), inferior temporal cortex (IT), lateral intraparietal area (LIP), prefrontal cortex (PFC), and frontal eye fields (FEF)] of monkeys reporting the color or motion of stimuli. After a transient bottom-up sweep, there was a top-down flow of sustained task information from frontoparietal to visual cortex. Sensory information flowed from visual to parietal and prefrontal cortex. Choice signals developed simultaneously in frontoparietal regions and travelled to FEF and sensory cortex. This suggests that flexible sensorimotor choices emerge in a frontoparietal network from the integration of opposite flows of sensory and task information.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721574/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721574/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegel, Markus -- Buschman, Timothy J -- Miller, Earl K -- 5R37MH087027/MH/NIMH NIH HHS/ -- R00 MH092715/MH/NIMH NIH HHS/ -- R37 MH087027/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1352-5. doi: 10.1126/science.aab0551.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Integrative Neuroscience and MEG Center, University of Tubingen, Tubingen, Germany. Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. markus.siegel@uni-tuebingen.de. ; Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA. ; Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089513" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/*physiology ; Color Vision ; Cues ; Feedback, Sensory/*physiology ; Female ; Macaca mulatta ; Male ; Mental Processes/*physiology ; Motion ; Parietal Lobe/physiology ; Photic Stimulation ; Prefrontal Cortex/physiology ; Temporal Lobe/physiology ; Visual Cortex/physiology ; Visual Pathways/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...