ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (68)
  • FLUID MECHANICS AND HEAT TRANSFER  (63)
  • 1
    Publication Date: 2013-04-05
    Description: Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637846/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637846/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liao, Hua-Xin -- Lynch, Rebecca -- Zhou, Tongqing -- Gao, Feng -- Alam, S Munir -- Boyd, Scott D -- Fire, Andrew Z -- Roskin, Krishna M -- Schramm, Chaim A -- Zhang, Zhenhai -- Zhu, Jiang -- Shapiro, Lawrence -- NISC Comparative Sequencing Program -- Mullikin, James C -- Gnanakaran, S -- Hraber, Peter -- Wiehe, Kevin -- Kelsoe, Garnett -- Yang, Guang -- Xia, Shi-Mao -- Montefiori, David C -- Parks, Robert -- Lloyd, Krissey E -- Scearce, Richard M -- Soderberg, Kelly A -- Cohen, Myron -- Kamanga, Gift -- Louder, Mark K -- Tran, Lillian M -- Chen, Yue -- Cai, Fangping -- Chen, Sheri -- Moquin, Stephanie -- Du, Xiulian -- Joyce, M Gordon -- Srivatsan, Sanjay -- Zhang, Baoshan -- Zheng, Anqi -- Shaw, George M -- Hahn, Beatrice H -- Kepler, Thomas B -- Korber, Bette T M -- Kwong, Peter D -- Mascola, John R -- Haynes, Barton F -- AI067854/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):469-76. doi: 10.1038/nature12053. Epub 2013 Apr 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke University Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, North Carolina 27710, USA. hliao@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552890" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Africa ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/genetics/immunology ; Antibodies, Neutralizing/*chemistry/genetics/*immunology ; Antigens, CD4/chemistry/immunology ; Cell Lineage ; Cells, Cultured ; Clone Cells/cytology ; Cross Reactions/immunology ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; *Evolution, Molecular ; HIV Antibodies/*chemistry/genetics/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/immunology/metabolism ; HIV-1/*chemistry/classification/*immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Phylogeny ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Travis K -- Jordan, Robert -- Lo, Michael K -- Ray, Adrian S -- Mackman, Richard L -- Soloveva, Veronica -- Siegel, Dustin -- Perron, Michel -- Bannister, Roy -- Hui, Hon C -- Larson, Nate -- Strickley, Robert -- Wells, Jay -- Stuthman, Kelly S -- Van Tongeren, Sean A -- Garza, Nicole L -- Donnelly, Ginger -- Shurtleff, Amy C -- Retterer, Cary J -- Gharaibeh, Dima -- Zamani, Rouzbeh -- Kenny, Tara -- Eaton, Brett P -- Grimes, Elizabeth -- Welch, Lisa S -- Gomba, Laura -- Wilhelmsen, Catherine L -- Nichols, Donald K -- Nuss, Jonathan E -- Nagle, Elyse R -- Kugelman, Jeffrey R -- Palacios, Gustavo -- Doerffler, Edward -- Neville, Sean -- Carra, Ernest -- Clarke, Michael O -- Zhang, Lijun -- Lew, Willard -- Ross, Bruce -- Wang, Queenie -- Chun, Kwon -- Wolfe, Lydia -- Babusis, Darius -- Park, Yeojin -- Stray, Kirsten M -- Trancheva, Iva -- Feng, Joy Y -- Barauskas, Ona -- Xu, Yili -- Wong, Pamela -- Braun, Molly R -- Flint, Mike -- McMullan, Laura K -- Chen, Shan-Shan -- Fearns, Rachel -- Swaminathan, Swami -- Mayers, Douglas L -- Spiropoulou, Christina F -- Lee, William A -- Nichol, Stuart T -- Cihlar, Tomas -- Bavari, Sina -- R01 AI113321/AI/NIAID NIH HHS/ -- R01AI113321/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):381-5. doi: 10.1038/nature17180. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA. ; United States Army Medical Research Institute of Infectious Diseases, Therapeutic Development Center, Frederick, Maryland 21702, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. ; Boston University School of Medicine, Boston, Massachusetts 02118, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934220" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/pharmacokinetics/pharmacology/therapeutic use ; Amino Acid Sequence ; Animals ; Antiviral Agents/pharmacokinetics/pharmacology/*therapeutic use ; Cell Line, Tumor ; Ebolavirus/drug effects ; Female ; HeLa Cells ; Hemorrhagic Fever, Ebola/*drug therapy/prevention & control ; Humans ; Macaca mulatta/*virology ; Male ; Molecular Sequence Data ; Organ Specificity ; Prodrugs/pharmacokinetics/pharmacology/therapeutic use ; Ribonucleotides/pharmacokinetics/pharmacology/*therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-29
    Description: Evidence of simian immunodeficiency virus (SIV) infection has been reported for 26 different species of African nonhuman primates. Two of these viruses, SIVcpz from chimpanzees and SIVsm from sooty mangabeys, are the cause of acquired immunodeficiency syndrome (AIDS) in humans. Together, they have been transmitted to humans on at least seven occasions. The implications of human infection by a diverse set of SIVs and of exposure to a plethora of additional human immunodeficiency virus-related viruses are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hahn, B H -- Shaw, G M -- De Cock, K M -- Sharp, P M -- N01 AI 35338/AI/NIAID NIH HHS/ -- R01 AI 40951/AI/NIAID NIH HHS/ -- R01 AI 44596/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 28;287(5453):607-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Howard Hughes Medical Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA. bhahn@uab.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10649986" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/epidemiology/*transmission/virology ; Africa, Western/epidemiology ; Amino Acid Sequence ; Animals ; Disease Outbreaks ; Disease Reservoirs ; *HIV-1/genetics ; *HIV-2/genetics ; Haplorhini/*virology ; Humans ; Molecular Sequence Data ; Phylogeny ; Public Health ; Simian Acquired Immunodeficiency Syndrome/virology ; Simian Immunodeficiency Virus/classification/genetics/*physiology ; Species Specificity ; Zoonoses/*transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-03-10
    Description: beta-Lactamase and penicillin-binding protein 2a mediate staphylococcal resistance to beta-lactam antibiotics, which are otherwise highly clinically effective. Production of these inducible proteins is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal transducer is a fusion protein with penicillin-binding and zinc metalloprotease domains. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which autoactivates, and the repressor, which is inactivated, unblocking gene transcription. Compounds that disrupt this regulatory pathway could restore the activity of beta-lactam antibiotics against drug-resistant strains of staphylococci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, H Z -- Hackbarth, C J -- Chansky, K M -- Chambers, H F -- AI4005804/AI/NIAID NIH HHS/ -- AI46610/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1962-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, San Francisco General Hospital, Department of Medicine, University of California at San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11239156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Anti-Bacterial Agents/metabolism/pharmacology ; Bacterial Proteins/chemistry/metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Catalysis ; Cell Membrane/metabolism ; Cloning, Molecular ; DNA-Binding Proteins/chemistry/metabolism ; Genes, Regulator ; Metalloendopeptidases/chemistry/metabolism ; Mutagenesis, Site-Directed ; *Penicillin-Binding Proteins ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism ; *Signal Transduction ; Staphylococcus aureus/*drug effects/genetics/*metabolism ; Transformation, Bacterial ; *beta-Lactam Resistance ; beta-Lactamases/*biosynthesis ; beta-Lactams
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-21
    Description: Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge. This process regulates various cellular functions such as plasma membrane repair in plants and animals, the discharge of defensive spikes in Paramecium, and the secretion of insulin from pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons. In animal cells, serine/threonine kinases including cAMP-dependent protein kinase, protein kinase C and calmodulin kinases have been implicated in calcium-signal transduction leading to regulated secretion. Although plants and protozoa also regulate secretion by means of intracellular calcium, the method by which these signals are relayed has not been explained. Here we show that the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a block of essential phenotypes including parasite motility, host-cell invasion, and egress. These phenotypes were recapitulated by using a chemical biology approach in which pyrazolopyrimidine-derived compounds specifically inhibited TgCDPK1 and disrupted the parasite's life cycle at stages dependent on microneme secretion. Inhibition was specific to TgCDPK1, because expression of a resistant mutant kinase reversed sensitivity to the inhibitor. TgCDPK1 is conserved among apicomplexans and belongs to a family of kinases shared with plants and ciliates, suggesting that related CDPKs may have a function in calcium-regulated secretion in other organisms. Because this kinase family is absent from mammalian hosts, it represents a validated target that may be exploitable for chemotherapy against T. gondii and related apicomplexans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lourido, Sebastian -- Shuman, Joel -- Zhang, Chao -- Shokat, Kevan M -- Hui, Raymond -- Sibley, L David -- R01 AI034036/AI/NIAID NIH HHS/ -- R01 AI034036-17/AI/NIAID NIH HHS/ -- England -- Nature. 2010 May 20;465(7296):359-62. doi: 10.1038/nature09022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485436" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cells, Cultured ; *Exocytosis ; Fibroblasts/parasitology ; Foreskin ; Gene Knockout Techniques ; Host-Pathogen Interactions/physiology ; Humans ; Male ; Molecular Sequence Data ; Organelles/metabolism ; Phenotype ; Protein Kinases/deficiency/genetics/*metabolism ; Protein Phosphatase 1/chemistry/metabolism ; Toxoplasma/*cytology/*enzymology/pathogenicity/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-12-21
    Description: In order to examine the mechanisms by which clonal deletion of autoreactive T cells occurs, a peptide antigen was used to induce deletion of antigen-reactive thymocytes in vivo. Mice transgenic for a T cell receptor (TCR) that reacts to this peptide contain thymocytes that progress from the immature to the mature phenotype. Intraperitoneal administration of the peptide antigen to transgenic mice results in a rapid deletion of the immature CD4+ CD8+ TCRlo thymocytes. Apoptosis of cortical thymocytes can be seen within 20 hours of treatment. These results provide direct evidence for the in vivo role of apoptosis in the development of antigen-induced tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, K M -- Heimberger, A B -- Loh, D Y -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1720-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2125367" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/*immunology ; Antigens, CD8 ; Antigens, Differentiation, T-Lymphocyte/*immunology ; Mice ; Mice, Transgenic ; Microscopy, Electron ; Molecular Sequence Data ; Ovalbumin/immunology ; Phagocytosis ; Phenotype ; Receptors, Antigen, T-Cell/genetics/*immunology ; T-Lymphocytes/cytology/*immunology/ultrastructure ; Thymus Gland/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-09-14
    Description: Proteolytically produced carboxyl-terminal fragments of the human immunodeficiency virus type-1 (HIV-1) Tat protein that include a conserved region rich in arginine and lysine bind specifically to transactivation response RNA sequences (TAR). A chemically synthesized 14-residue peptide spanning the basic subdomain also recognizes TAR, identifying this subdomain as central for RNA interaction. TAR RNA forms a stable hairpin that includes a six-residue loop, a trinucleotide pyrimidine bulge, and extensive duplex structure. Competition and interference experiments show that the Tat-derived fragments bind to double-stranded RNA and interact specifically at the pyrimidine bulge and adjacent duplex of TAR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weeks, K M -- Ampe, C -- Schultz, S C -- Steitz, T A -- Crothers, D M -- GM-21966/GM/NIGMS NIH HHS/ -- GM-39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1281-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, New Haven, CT.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2205002" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Gene Products, tat/*metabolism ; HIV-1/*genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Fragments/isolation & purification/metabolism ; Peptide Hydrolases ; RNA, Messenger/genetics/*metabolism ; RNA, Viral/genetics/*metabolism ; Recombinant Fusion Proteins/isolation & purification/metabolism ; Regulatory Sequences, Nucleic Acid/genetics/physiology ; Structure-Activity Relationship ; Trans-Activators/*metabolism ; Transcriptional Activation/genetics ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-07-03
    Description: Aldose reductase, which catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds, is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney. A 1.65 angstrom refined structure of a recombinant human placenta aldose reductase reveals that the enzyme contains a parallel beta 8/alpha 8-barrel motif and establishes a new motif for NADP-binding oxidoreductases. The substrate-binding site is located in a large, deep elliptical pocket at the COOH-terminal end of the beta barrel with a bound NADPH in an extended conformation. The highly hydrophobic nature of the active site pocket greatly favors aromatic and apolar substrates over highly polar monosaccharides. The structure should allow for the rational design of specific inhibitors that might provide molecular understanding of the catalytic mechanism, as well as possible therapeutic agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, D K -- Bohren, K M -- Gabbay, K H -- Quiocho, F A -- DK-39,044/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621098" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Reductase/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; *Diabetes Complications ; Diabetes Mellitus/*enzymology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-04-10
    Description: Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, Q W -- Cho, H J -- Calaycay, J -- Mumford, R A -- Swiderek, K M -- Lee, T D -- Ding, A -- Troso, T -- Nathan, C -- AI30165/AI/NIAID NIH HHS/ -- CA43610/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 10;256(5054):225-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1373522" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/biosynthesis/*genetics ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; Codon ; Enzyme Induction ; Interferon-gamma/pharmacology ; Isoenzymes/biosynthesis/*genetics ; Kinetics ; Lipopolysaccharides ; Macrophages/drug effects/*enzymology ; Mammary Neoplasms, Experimental ; Mice ; Molecular Sequence Data ; Molecular Weight ; Neutrophils/drug effects/enzymology ; Nitric Oxide Synthase ; Oligodeoxyribonucleotides ; Poly A/genetics ; RNA/genetics ; RNA, Messenger ; Rats ; Sequence Homology, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-06-25
    Description: Lipoprotein-associated coagulation inhibitor (LACI) appears to inhibit tissue factor (TF)-induced blood coagulation by forming a quaternary inhibitory complex containing factor Xa, LACI, factor VIIa, and TF. A genetically engineered hybrid protein consisting of the light chain of factor Xa and the first Kunitz-type inhibitor domain of LACI is shown to directly inhibit the activity of the factor VIIa-TF catalytic complex. Unlike inhibition of factor VIIa-TF activity by native LACI, inhibition by the hybrid protein is not dependent on factor Xa. In an assay of TF-induced coagulation, 50% TF inhibition occurs with hybrid protein at 35 nanograms per milliliter, whereas LACI at 2.5 micrograms per milliliter is required for an equivalent effect. gamma-Carboxylation of glutamic acid residues in the factor Xa light chain portion of the hybrid protein is required for inhibitory activity, indicating that the first Kunitz-type domain of LACI alone is not sufficient for inhibition of factor VIIa-TF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Girard, T J -- MacPhail, L A -- Likert, K M -- Novotny, W F -- Miletich, J P -- Broze, G J Jr -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1421-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Jewish Hospital, Washington University Medical Center, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1972598" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Carboxyglutamic Acid/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Calcium/metabolism ; Cell Line ; Cloning, Molecular ; Factor VII/antagonists & inhibitors/metabolism/*pharmacology ; Factor VIIa/*antagonists & inhibitors/metabolism ; Factor Xa/metabolism/*pharmacology ; Fibroblasts/metabolism ; Glutamates/metabolism ; Glutamic Acid ; Lipoproteins/metabolism/*pharmacology ; Mice ; Molecular Sequence Data ; Papillomaviridae ; Protease Inhibitors/*pharmacology ; Protein Sorting Signals ; Recombinant Fusion Proteins/*pharmacology ; Thromboplastin/antagonists & inhibitors/metabolism/*pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...