ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Alkalinity, total; Aragonite saturation state; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate, per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size; Chromista; Emiliania huxleyi; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon production per cell; Particulate organic carbon production per cell; Pelagos; pH; Phosphate; Phytoplankton; Salinity; Single species; Species; Temperature, water; Treatment  (1)
  • Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biological sample; BIOS; Block; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Gullmar_fjord_2013; Gullmar Fjord, Skagerrak, Sweden; Identification; Laboratory experiment; Mesocosm label; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phytoplankton; Salinity; Silicate; Single species; Skeletonema marinoi; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Time in hours; Treatment: partial pressure of carbon dioxide; Type  (1)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-03-15
    Beschreibung: Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change.
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biological sample; BIOS; Block; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Gullmar_fjord_2013; Gullmar Fjord, Skagerrak, Sweden; Identification; Laboratory experiment; Mesocosm label; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phytoplankton; Salinity; Silicate; Single species; Skeletonema marinoi; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Time in hours; Treatment: partial pressure of carbon dioxide; Type
    Materialart: Dataset
    Format: text/tab-separated-values, 2058 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H (2012): Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience, 5(5), 346-351, https://doi.org/10.1038/ngeo1441
    Publikationsdatum: 2024-03-15
    Beschreibung: Ocean acidification, the drop in seawater pH associated with the ongoing enrichment of marine waters with carbon dioxide from fossil fuel burning, may seriously impair marine calcifying organisms. Our present understanding of the sensitivity of marine life to ocean acidification is based primarily on short-term experiments, in which organisms are exposed to increased concentrations of CO2. However, phytoplankton species with short generation times, in particular, may be able to respond to environmental alterations through adaptive evolution. Here, we examine the ability of the world's single most important calcifying organism, the coccolithophore Emiliania huxleyi, to evolve in response to ocean acidification in two 500-generation selection experiments. Specifically, we exposed E. huxleyi populations founded by single or multiple clones to increased concentrations of CO2. Around 500 asexual generations later we assessed their fitness. Compared with populations kept at ambient CO2 partial pressure, those selected at increased partial pressure exhibited higher growth rates, in both the single- and multiclone experiment, when tested under ocean acidification conditions. Calcification was partly restored: rates were lower under increased CO2 conditions in all cultures, but were up to 50% higher in adapted compared with non-adapted cultures. We suggest that contemporary evolution could help to maintain the functionality of microbial processes at the base of marine food webs in the face of global change.
    Schlagwort(e): Alkalinity, total; Aragonite saturation state; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate, per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size; Chromista; Emiliania huxleyi; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon production per cell; Particulate organic carbon production per cell; Pelagos; pH; Phosphate; Phytoplankton; Salinity; Single species; Species; Temperature, water; Treatment
    Materialart: Dataset
    Format: text/tab-separated-values, 3150 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...