ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2453–2466, doi:10.1175/JCLI-D-12-00023.1.
    Description: The North Atlantic Oscillation (NAO) is one of the most important modes of variability in the global climate system and is characterized by a meridional dipole in the sea level pressure field, with centers of action near Iceland and the Azores. It has a profound influence on the weather, climate, ecosystems, and economies of Europe, Greenland, eastern North America, and North Africa. It has been proposed that around 1980, there was an eastward secular shift in the NAO’s northern center of action that impacted sea ice export through Fram Strait. Independently, it has also been suggested that the location of its southern center of action is tied to the phase of the NAO. Both of these attributes of the NAO have been linked to anthropogenic climate change. Here the authors use both the one-point correlation map technique as well as empirical orthogonal function (EOF) analysis to show that the meridional dipole that is often seen in the sea level pressure field over the North Atlantic is not purely the result of the NAO (as traditionally defined) but rather arises through an interplay among the NAO and two other leading modes of variability in the North Atlantic region: the East Atlantic (EA) and the Scandinavian (SCA) patterns. This interplay has resulted in multidecadal mobility in the two centers of action of the meridional dipole since the late nineteenth century. In particular, an eastward movement of the dipole has occurred during the 1930s to 1950s as well as more recently. This mobility is not seen in the leading EOF of the sea level pressure field in the region.
    Description: GWKM was supported by the Natural Sciences and Engineering Research Council of Canada. IAR was supported in part by NE/C003365/1. RSP was supported by Grant OCE-0959381 from the U.S. National Science Foundation.
    Description: 2013-10-15
    Keywords: North Atlantic Ocean ; North Atlantic Oscillation ; Climate variability ; Climatology ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 3628–3635, doi:10.1002/2014GL059940.
    Description: The Labrador Sea is a region of climatic importance as a result of the occurrence of oceanic wintertime convection, a process that is integral to the Atlantic Meridional Overturning Circulation. This process requires large air-sea heat fluxes that result in a loss of surface buoyancy, triggering convective overturning of the water column. The Labrador Sea wintertime turbulent heat flux maximum is situated downstream of the ice edge, a location previously thought to be causal. Here we show that there is considerable similarity in the characteristics of the regional mean atmospheric circulation and high heat flux events over the Labrador Sea during early winter, when the ice is situated to the north, and midwinter, when it is near the region of maximum heat loss. This suggests that other factors, including the topography of the nearby upstream and downstream landmasses, contribute to the location of the heat flux maximum.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. R.S.P. was supported by grant OCE-085041 from the U.S. National Science Foundation. I. A.R. would like to acknowledge support from NERC grant NE/I005293/1. K.V. received funding from NACLIM, a project of the European Union Seventh Framework Programme under grant agreement 308299.
    Description: 2014-11-19
    Keywords: Air-sea interaction ; Oceanic convection ; Extratropical cyclones ; Flow distortion ; Polar meterorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 229–245, doi:10.1175/JPO-D-12-0218.1.
    Description: Data from a mooring deployed at the edge of the East Greenland shelf south of Denmark Strait from September 2007 to October 2008 are analyzed to investigate the processes by which dense water is transferred off the shelf. It is found that water denser than 27.7 kg m−3—as dense as water previously attributed to the adjacent East Greenland Spill Jet—resides near the bottom of the shelf for most of the year with no discernible seasonality. The mean velocity in the central part of the water column is directed along the isobaths, while the deep flow is bottom intensified and veers offshore. Two mechanisms for driving dense spilling events are investigated, one due to offshore forcing and the other associated with wind forcing. Denmark Strait cyclones propagating southward along the continental slope are shown to drive off-shelf flow at their leading edges and are responsible for much of the triggering of individual spilling events. Northerly barrier winds also force spilling. Local winds generate an Ekman downwelling cell. Nonlocal winds also excite spilling, which is hypothesized to be the result of southward-propagating coastally trapped waves, although definitive confirmation is still required. The combined effect of the eddies and barrier winds results in the strongest spilling events, while in the absence of winds a train of eddies causes enhanced spilling.
    Description: The authors wish to thank Paula Fratantoni, Frank Bahr, and Dan Torres for processing the mooring data. The mooring array was capably deployed by the crew of the R/V Arni Fridriksson and recovered by the crew of the R/V Knorr. We thank Hedinn Valdimarsson for his assistance in the field work. Ken Brink provided valuable insights regarding the dynamics of shelf waves. Funding for the study was provided by National Science Foundation Grant OCE-0722694, the Arctic Research Initiative of the Woods Hole Oceanographic Institution. We also wish to thank the Natural Environment Research Council for Ph.D. studentship funding, and the University of East Anglia’s Roberts Fund and Royal Meteorological Society for supporting travel for collaboration.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Meridional overturning circulation ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Eddies ; Extreme events ; Physical Meteorology and Climatology ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L18806, doi:10.1029/2012GL053097.
    Description: On a variety of spatial and temporal scales, the energy transferred by air-sea heat and moisture fluxes plays an important role in both atmospheric and oceanic circulations. This is particularly true in the sub-polar North Atlantic Ocean, where these fluxes drive water-mass transformations that are an integral component of the Atlantic Meridional Overturning Circulation (AMOC). Here we use the ECMWF Interim Reanalysis to provide a high-resolution view of the spatial structure of the air-sea turbulent heat fluxes over the sub-polar North Atlantic Ocean. As has been previously recognized, the Labrador and Greenland Seas are areas where these fluxes are large during the winter months. Our particular focus is on the Iceland Sea region where, despite the fact that water-mass transformation occurs, the winter-time air-sea heat fluxes are smaller than anywhere else in the sub-polar domain. We attribute this minimum to a saddle point in the sea-level pressure field, that results in a reduction in mean surface wind speed, as well as colder sea surface temperatures associated with the regional ocean circulation. The magnitude of the heat fluxes in this region are modulated by the relative strength of the Icelandic and Lofoten Lows, and this leads to periods of ocean cooling and even ocean warming when, intriguingly, the sensible and latent heat fluxes are of opposite sign. This suggests that the air-sea forcing in this area has large-scale impacts for climate, and that even modest shifts in the atmospheric circulation could potentially impact the AMOC.
    Description: GWKM was supported by the Natural Science and Engineering Research Council of Canada. IAR was funded in part by NCAS (the National Centre for Atmospheric Sciences) and by NERC grant NE/I005293/1. RSP was funded by grant OCE-0959381 fromthe US National Science Foundation.
    Description: 2013-03-27
    Keywords: Air-sea interaction ; Climate variability ; Water mass transformation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Renfrew, I. A., Barrell, C., Elvidge, A. D., Brooke, J. K., Duscha, C., King, J. C., Kristiansen, J., Cope, T. L., Moore, G. W. K., Pickart, R. S., Reuder, J., Sandu, I., Sergeev, D., Terpstra, A., Vage, K., & Weiss, A. An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: the impact of sea ice distribution. Quarterly Journal of the Royal Meteorological Society, (2020): 1-22, doi:10.1002/qj.3941.
    Description: The Iceland and Greenland Seas are a crucial region for the climate system, being the headwaters of the lower limb of the Atlantic Meridional Overturning Circulation. Investigating the atmosphere–ocean–ice processes in this region often necessitates the use of meteorological reanalyses—a representation of the atmospheric state based on the assimilation of observations into a numerical weather prediction system. Knowing the quality of reanalysis products is vital for their proper use. Here we evaluate the surface‐layer meteorology and surface turbulent fluxes in winter and spring for the latest reanalysis from the European Centre for Medium‐Range Weather Forecasts, i.e., ERA5. In situ observations from a meteorological buoy, a research vessel, and a research aircraft during the Iceland–Greenland Seas Project provide unparalleled coverage of this climatically important region. The observations are independent of ERA5. They allow a comprehensive evaluation of the surface meteorology and fluxes of these subpolar seas and, for the first time, a specific focus on the marginal ice zone. Over the ice‐free ocean, ERA5 generally compares well to the observations of surface‐layer meteorology and turbulent fluxes. However, over the marginal ice zone, the correspondence is noticeably less accurate: for example, the root‐mean‐square errors are significantly higher for surface temperature, wind speed, and surface sensible heat flux. The primary reason for the difference in reanalysis quality is an overly smooth sea‐ice distribution in the surface boundary conditions used in ERA5. Particularly over the marginal ice zone, unrepresented variability and uncertainties in how to parameterize surface exchange compromise the quality of the reanalyses. A parallel evaluation of higher‐resolution forecast fields from the Met Office's Unified Model corroborates these findings.
    Description: This study was part of the Iceland Greenland Seas Project. Funding was from the NERC AFIS grant (NE/N009754/1), the ALERTNESS (Advanced models and weather prediction in the Arctic: enhanced capacity from observations and polar process representations) project (Research Council of Norway project number 280573), the Trond Mohn Foundation (BFS2016REK01), and the National Science Foundation grant OCE‐1558742. The Leosphere WindCube v2 and the Wavescan buoy are part of the OBLO (Offshore Boundary Layer Observatory) infrastructure funded by the Research Council of Norway (project number 227777).
    Keywords: ERA5 ; Marginal ice zone ; OSTIA ; Sea ice ; Subpolar seas ; Surface fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...