ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 90 (2013): 4-14, doi:10.1016/j.dsr2.2013.03.041.
    Description: An austral winter cruise in July-August 2006 was conducted to study the winter circulation and iron delivery processes in the Southern Drake Passage and Bransfield Strait. Results from current and hydrographic measurements revealed a circulation pattern similar to that of the austral summer season observed in previous studies: The Shackleton Transverse Ridge (STR) in the southern Drake Passage blocks a part of the eastward Antarctic Circumpolar Current (ACC) which forces the ACC to detour southward, produces a Taylor Column over the STR, and forms an ACC jet within the Shackleton Gap, a deep channel between the STR and the shelf of Elephant Island. Observations show that to the west of the STR, the Upper Circumpolar Deep Water (UCDW) intruded onto the shelf around the South Shetland Islands while to the east of the STR, shelf waters were transported off the northern shelf of Elephant Island. Along a similar west-east transect approximately 50 km off the shelf, the northward transport of shelf waters was approximately 2.4 and 1.2 Sv in the austral winter and summer, respectively. The waters around Elephant Island primarily consist of the UCDW that has been modified by local cooling and freshening, unmodified UCDW that has recently intruded onto the shelf, and Bransfield Current water that is a mixture of shelf and Bransfield Strait waters. Weddell Sea outflows were observed which affect the hydrography and circulation in the Bransfield Strait and indirectly affect the circulation patterns in the southern Drake Passage and around Elephant Island. Two Fe enrichment and transport mechanisms are proposed that intrusions of the UCDW onto the northern shelf region of the South Shetland Islands is considered as the results of Ekman pumping due to prevailing westerly wind in the region while the offshelf transport of shelf waters in the shelf region east of Elephant Island is due to acquisition of positive vorticity by shelf waters from horizontal mixing with onshelf intruded ACC waters.
    Description: This project was supported by the National Science Foundation grant numbers OPP-0229966, ANT-0444040 and ANT-0948378 to M. Zhou, OPP0230445, ANT0443403 and ANT-0948357 to C. Measures, ANT0443869 and ANT-0948442 to M. Charette, and OPP0230443, ANT0444134 and ANT0948338 to B.G. Mitchell.
    Keywords: Southern Ocean ; Drake Passage ; Antarctic Circumpolar Current ; Shelf waters ; Mesoscale eddies ; Mixing ; Iron transport
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cronin, M. F., Gentemann, C. L., Edson, J., Ueki, I., Bourassa, M., Brown, S., Clayson, C. A., Fairall, C. W., Farrar, J. T., Gille, S. T., Gulev, S., Josey, S. A., Kato, S., Katsumata, M., Kent, E., Krug, M., Minnett, P. J., Parfitt, R., Pinker, R. T., Stackhouse, P. W., Jr., Swart, S., Tomita, H., Vandemark, D., Weller, R. A., Yoneyama, K., Yu, L., & Zhang, D. Air-sea fluxes with a focus on heat and momentum. Frontiers in Marine Science, 6, (2019): 430, doi:10.3389/fmars.2019.00430.
    Description: Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
    Description: EK was funded by the NERC CLASS Program (NE/R015953/1). CLG was funded by NASA grant 80NSSC18K0837. SG was funded by MEGAGRANT P220 program (#14.W03.31.0006).
    Keywords: Air-sea heat flux ; Latent heat flux ; Surface radiation ; Ocean wind stress ; Autonomous surface vehicle ; OceanSITES ; ICOADS ; Satellite-based ocean monitoring system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...