ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-27
    Description: One of the major challenges facing the integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is the lack of an onboard pilot that can comply with the legal requirement identified in the US Code of Federal Regulations (CFR) that pilots see and avoid other aircraft. UAS will be expected to demonstrate the means to perform the function of see and avoid while preserving the safety level of the airspace and the efficiency of the air traffic system. This paper introduces a Sense and Avoid (SAA) concept for integration of UAS into the NAS that is currently being developed by the National Aeronautics and Space Administration (NASA) and identifies areas that require additional experimental evaluation to further inform various elements of the concept. The concept design rests on interoperability principles that take into account both the Air Traffic Control (ATC) environment as well as existing systems such as the Traffic Alert and Collision Avoidance System (TCAS). Specifically, the concept addresses the determination of well clear values that are large enough to avoid issuance of TCAS corrective Resolution Advisories, undue concern by pilots of proximate aircraft and issuance of controller traffic alerts. The concept also addresses appropriate declaration times for projected losses of well clear conditions and maneuvers to regain well clear separation.
    Keywords: Air Transportation and Safety
    Type: NF1676L-13199 , ICAS 2012-28th Congress of the International Council of the Aeronautical Sciences; 23-28 Sept. 2012; Brisbane; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.
    Keywords: Air Transportation and Safety
    Type: 24th Congress of International Councils of Aeronautical Sciences; Aug 29, 2004 - Sep 04, 2004; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper presents DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems), a reference implementation of a detect and avoid concept intended to support the integration of Unmanned Aircraft Systems into civil airspace. DAIDALUS consists of self-separation and alerting algorithms that provide situational awareness to UAS remote pilots. These algorithms have been formally specified in a mathematical notation and verified for correctness in an interactive theorem prover. The software implementation has been verified against the formal models and validated against multiple stressing cases jointly developed by the US Air Force Research Laboratory, MIT Lincoln Laboratory, and NASA. The DAIDALUS reference implementation is currently under consideration for inclusion in the appendices to the Minimum Operational Performance Standards for Unmanned Aircraft Systems presently being developed by RTCA Special Committee 228.
    Keywords: Air Transportation and Safety
    Type: NF1676L-20901 , 2015 AIAA/IEEE Digital Avionics Systems Conference; Sep 13, 2015 - Sep 17, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper describes a Detect and Avoid (DAA) concept for integration of UAS into the NAS developed by the National Aeronautics and Space Administration (NASA) and provides results from recent human-in-the-loop experiments performed to investigate interoperability and acceptability issues associated with these vehicles and operations. The series of experiments was designed to incrementally assess critical elements of the new concept and the enabling technologies that will be required.
    Keywords: Air Transportation and Safety
    Type: NF1676L-20923 , 2015 IEEE/AIAA Digital Avionics Systems Conference (DASC); Sep 13, 2015 - Sep 17, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This study examined air traffic controller acceptability ratings based on the effects of differing horizontal miss distances (HMDs) for encounters between UAS and manned aircraft. In a simulation of the Dallas/Fort Worth (DFW) East-side airspace, the CAS-1 experiment at NASA Langley Research Center enlisted fourteen recently retired DFW air traffic controllers to rate well-clear volumes based on differing HMDs that ranged from 0.5 NM to 3.0 NM. The controllers were tasked with rating these HMDs from "too small" to "too excessive" on a defined, 1-5, scale and whether these distances caused any disruptions to the controller and/or to the surrounding traffic flow. Results of the study indicated a clear favoring towards a particular HMD range. Controller workload was also measured. Data from this experiment and subsequent experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely and efficiently integrate UAS into the NAS.
    Keywords: Air Transportation and Safety
    Type: NF1676L-19763 , International Symposium on Aviation Psychology; May 04, 2015 - May 07, 2015; Dayton, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.
    Keywords: Air Transportation and Safety
    Type: NF1676L-19771 , International Symposium on Aviation Psychology; May 04, 2015 - May 07, 2015; Dayton, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction
    Keywords: Air Transportation and Safety
    Type: NF1676L-12241 , 2011 IEEE AIAA 30th Digital Avionics Systems Conference; Oct 16, 2011 - Oct 20, 2011; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Self-separation is a concept of flight operations that aims to provide user benefits and increase airspace capacity by transferring traffic separation responsibility from ground-based controllers to the flight crew. Self-separation is enabled by cooperative airborne surveillance, such as that provided by the Automatic Dependent Surveillance-Broadcast (ADSB) system and airborne separation assistance technologies. This paper describes an assessment of the impact of ADS-B system performance on the performance of self-separation as a step towards establishing far-term ADS-B performance requirements. Specifically, the impacts of ADS-B surveillance range and interference limitations were analyzed under different traffic density levels. The analysis was performed using a batch simulation of aircraft performing self-separation assisted by NASA s Autonomous Operations Planner prototype flight-deck tool, in two-dimensional airspace. An aircraft detected conflicts within a look-ahead time of ten minutes and resolved them using strategic closed trajectories or tactical open maneuvers if the time to loss of separation was below a threshold. While a complex interaction was observed between the impacts of surveillance range and interference, as both factors are physically coupled, self-separation performance followed expected trends. An increase in surveillance range resulted in a decrease in the number of conflict detections, an increase in the average conflict detection lead time, and an increase in the percentage of conflict resolutions that were strategic. The majority of the benefit was observed when surveillance range was increased to a value corresponding to the conflict detection look-ahead time. The benefits were attenuated at higher interference levels. Increase in traffic density resulted in a significant increase in the number of conflict detections, as expected, but had no effect on the conflict detection lead time and the percentage of conflict resolutions that were strategic. With surveillance range corresponding to ADS-B minimum operational performance standards for Class A3 equipment and without background interference, a significant portion of conflict resolutions, 97 percent, were achieved in the preferred strategic mode. The majority of conflict resolutions, 71 percent, were strategic even with very high interference (over three times that expected in 2035).
    Keywords: Air Transportation and Safety
    Type: NF1676L-12303 , 2011 IEEE AIAA 30th Digital Avionics Systems Conference; Oct 16, 2011 - Oct 20, 2011; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
    Keywords: Air Transportation and Safety
    Type: NF1676L-25905
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: A fundamental requirement for the integration of unmanned aircraft into civil airspace is the capability of aircraft to remain well clear of each other and avoid collisions. This requirement has led to a broad recognition of the need for an unambiguous, formal definition of well clear. It is further recognized that any such definition must be interoperable with existing airborne collision avoidance systems (ACAS). A particular class of well-clear definitions uses logic checks of independent distance thresholds as well as independent time thresholds in the vertical and horizontal dimensions to determine if a well-clear violation is predicted to occur within a given time interval. Existing ACAS systems also use independent distance thresholds, however a common time threshold is used for the vertical and horizontal logic checks. The main contribution of this paper is the characterization of the effects of the decoupled vertical time threshold on a well-clear definition in terms of (1) time to well-clear violation, and (2) interoperability with existing ACAS. The paper provides governing equations for both metrics and includes simulation results to illustrate the relationships. In this paper, interoperability implies that the time of well-clear violation is strictly less than the time a resolution advisory is issued by ACAS. The encounter geometries under consideration in this paper are initially well clear and consist of constant-velocity trajectories resulting in near-mid-air collisions.
    Keywords: Air Transportation and Safety
    Type: NF1676L-20526
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...