ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-07
    Description: Low bone mineral density (BMD) is used as a parameter of osteoporosis. Genome-wide association studies of BMD have hitherto focused on BMD as a quantitative trait, yielding common variants of small effects that contribute to the population diversity in BMD. Here we use BMD as a dichotomous trait, searching for variants that may have a direct effect on the risk of pathologically low BMD rather than on the regulation of BMD in the healthy population. Through whole-genome sequencing of Icelandic individuals, we found a rare nonsense mutation within the leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) gene (c.376C〉T) that is strongly associated with low BMD, and with osteoporotic fractures. This mutation leads to termination of LGR4 at position 126 and fully disrupts its function. The c.376C〉T mutation is also associated with electrolyte imbalance, late onset of menarche and reduced testosterone levels, as well as an increased risk of squamous cell carcinoma of the skin and biliary tract cancer. Interestingly, the phenotype of carriers of the c.376C〉T mutation overlaps that of Lgr4 mutant mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Styrkarsdottir, Unnur -- Thorleifsson, Gudmar -- Sulem, Patrick -- Gudbjartsson, Daniel F -- Sigurdsson, Asgeir -- Jonasdottir, Aslaug -- Jonasdottir, Adalbjorg -- Oddsson, Asmundur -- Helgason, Agnar -- Magnusson, Olafur T -- Walters, G Bragi -- Frigge, Michael L -- Helgadottir, Hafdis T -- Johannsdottir, Hrefna -- Bergsteinsdottir, Kristin -- Ogmundsdottir, Margret H -- Center, Jacqueline R -- Nguyen, Tuan V -- Eisman, John A -- Christiansen, Claus -- Steingrimsson, Erikur -- Jonasson, Jon G -- Tryggvadottir, Laufey -- Eyjolfsson, Gudmundur I -- Theodors, Asgeir -- Jonsson, Thorvaldur -- Ingvarsson, Thorvaldur -- Olafsson, Isleifur -- Rafnar, Thorunn -- Kong, Augustine -- Sigurdsson, Gunnar -- Masson, Gisli -- Thorsteinsdottir, Unnur -- Stefansson, Kari -- HL-102923/HL/NHLBI NIH HHS/ -- HL-102924/HL/NHLBI NIH HHS/ -- HL-102925/HL/NHLBI NIH HHS/ -- HL-102926/HL/NHLBI NIH HHS/ -- HL-103010/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):517-20. doi: 10.1038/nature12124. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE Genetics/Amgen, 101 Reykjavik, Iceland. unnurth@decode.is〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Australia ; Biliary Tract Neoplasms/*genetics ; Bone Density/*genetics ; Carcinoma, Squamous Cell/*genetics ; Codon, Nonsense/*genetics ; Denmark ; Down-Regulation/genetics ; Female ; Heterozygote ; Humans ; Iceland ; Male ; Menarche/genetics ; Mice ; Mice, Knockout ; Osteoporotic Fractures/*genetics ; Phenotype ; Receptors, G-Protein-Coupled/chemistry/deficiency/*genetics/metabolism ; Skin Neoplasms/*genetics ; Testosterone/analysis ; Water-Electrolyte Imbalance/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34840 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the re-adapation phase following a return to an earth-gravitational environment. These alterations may disrupt the ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from space flight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual space flight, which crewmembers are likely to experience the greatest challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures that include: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; 3) genotype markers for genetic polymorphisms in Catechol-O-Methyl Transferase, Dopamine Receptor D2, Brain-derived neurotrophic factor and genetic polymorphism of alpha2-adrenergic receptor that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration space flight and an analog bed rest environment. We will be conducting a retrospective study leveraging data already collected from relevant ongoing/completed bed rest and space flight studies. These data will be combined with predictor metrics that will be collected prospectively - behavioral, brain imaging and genomic measures; from these returning subjects to build models for predicting post-mission (bed rest - non-astronauts or space flight - astronauts) adaptive capability as manifested in their outcome measures. Comparisons of model performance will allow us to better design and implement sensorimotor adaptability training countermeasures that are customized for each crewmember's sensory biases, adaptive capacity, brain structure and functional capacities, and genetic predispositions against decrements in post-mission adaptive capability. This ability will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32148 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-38515 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34838 , 2016 Human Research Program Investigators'' Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Astronauts experience Postflight disturbances in postural and locomotor control due to sensorimotor adaptation to the unique environment of spaceflight. These alterations might have adverse consequences if a rapid egress were required following a Mars landing or on return to Earth after a water landing. Currently, no operational countermeasure is targeted to mitigate Postflight balance and locomotor dysfunction.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38468 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...