ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: This status report corresponds to two studies tied to an animal experiment being executed at the University of California Davis (Charles Fuller's laboratory). The animal protocol uses the well-documented rat hindlimb suspension (HLS) model, to examine the relationship between cephalic fluid shifts and the regulation of intracranial (ICP) and intraocular (IOP) pressures as well as visual system structure and function. Long Evans rats are subjected to HLS durations of 7, 14, 28 and 90 days. Subgroups of the 90-day animals are studied for recovery periods of 7, 14, 28 or 90 days. All HLS subjects have age-matched cage controls. Various animal cohorts are planned for this study: young males, young females and old males. In addition to the live measures (ICP by telemetry, IOP and retinal parameters by optical coherence tomography) which are shared with the Fuller study, the specific outcomes for this study include: -Gene expression analysis of the retina -Histologic analysis - Analysis of the microvasculature of retina flat mounts by NASA's VESsel GENeration Analysis (VESGEN) Software. To date, the young male and female cohorts are being completed. Due to the need to keep technical variation to a minimum, the histologic and genomic analyses have been delayed until all samples from each cohort are available and can be processed in a single batch per cohort. The samples received so far correspond to young males sacrificed at 7,14, 28 and 90 days of HLS and at 90 days of recovery; and from young females sacrificed at 7, 14 and 28 of HLS. A complementary study titled: "A gene expression and histologic approach to the study of cerebrospinal fluid (CSF) production and outflow in hindlimb suspended rats" seeks to study the molecular components of CSF production and outflow modulation as a result of HLS, bringing a molecular and histologic approach to investigate genome wide expression changes in the arachnoid villi and choroid plexus of HLS rats compared to rats in normal posture.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34661 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The cephalad fluid shift induced by microgravity has been hypothesized to cause an elevation in intracranial pressure (ICP) and contribute to the development of the Visual Impairment/Intracranial Pressure (VIIP) syndrome, as experienced by some astronauts during long-duration space flight. Elevated ambient partial pressure of carbon dioxide (PCO2) on ISS may also raise ICP and contribute to VIIP development. We seek to determine if the combination of mild CO2 exposure, similar to that occurring on the International Space Station, with the cephalad fluid shift induced by head-down tilt, will induce ophthalmic and cerebral blood flow changes similar to those described in the VIIP syndrome. We hypothesize that mild hypercapnia in the head-down tilt position will increase choroidal blood volume and cerebral blood flow, raise intraocular pressure (IOP), and transiently reduce visual acuity as compared to the seated or the head-down tilt position without elevated CO2, respectively.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32228 , Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the re-adapation phase following a return to an earth-gravitational environment. These alterations may disrupt the ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from space flight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual space flight, which crewmembers are likely to experience the greatest challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures that include: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; 3) genotype markers for genetic polymorphisms in Catechol-O-Methyl Transferase, Dopamine Receptor D2, Brain-derived neurotrophic factor and genetic polymorphism of alpha2-adrenergic receptor that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration space flight and an analog bed rest environment. We will be conducting a retrospective study leveraging data already collected from relevant ongoing/completed bed rest and space flight studies. These data will be combined with predictor metrics that will be collected prospectively - behavioral, brain imaging and genomic measures; from these returning subjects to build models for predicting post-mission (bed rest - non-astronauts or space flight - astronauts) adaptive capability as manifested in their outcome measures. Comparisons of model performance will allow us to better design and implement sensorimotor adaptability training countermeasures that are customized for each crewmember's sensory biases, adaptive capacity, brain structure and functional capacities, and genetic predispositions against decrements in post-mission adaptive capability. This ability will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32148 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-32653 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Mean IOP significantly increased while at 6deg HDT and returned towards pre-bed rest values upon leaving bed rest. While mean IOP increased during bed rest, it remained within the normal limits for subject safety. A diuretic shift and cardiovascular deconditioning occurs during in-bed rest, as expected. There was no demonstrable correlation between the largest change in IOP (pre/post) and cardiovascular measure changes (pre/post). Additional mixed effects linear regression modeling may reveal some subclinical physiological changes that might assist in describing the VIIP syndrome pathophysiology.
    Keywords: Aerospace Medicine
    Type: JSC-CN-28954 , UTMB Medical School Summer Research Program; Jun 06, 2013; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-25768 , 2012 NASA Human Research Program (HRP) Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Reports of astronauts' visual changes have raised concern about ocular health during long-duration spaceflight. Some of these findings include globe flattening with hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, it is hypothesized that, in predisposed individuals, hypertension in the brain may follow cephalad fluid shifts during spaceflight. This possible mechanism of ocular changes may also apply to analogous cases of idiopathic intracranial hypertension (IIH) or pseudotumor cerebri on Earth patients. Head-down t ilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. Previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP) but the conditions of bed rest varied among experiments, making it difficult to compare data and draw conclusions. For these reasons, vision evaluation of bed rest subjects was implemented for NASA bed rest studies since 2010, in an attempt to monitor vision health in subjects subjected to bed rest. Vision monitoring is thus currently performed in all NASA-conducted bed rest campaigns
    Keywords: Aerospace Medicine
    Type: JSC-CN-25765 , HRP Investigators Workshop 2012; Feb 14, 2012 - Feb 16, 2012; Houston, TX
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-28107 , HRP Investigators'' Workshop; Feb 12, 2013 - Feb 14, 2013; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence tomography measurements of the retina.
    Keywords: Aerospace Medicine
    Type: JSC-CN-27608 , HRP Investigator''s Workshop; Feb 13, 2012 - Feb 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: Accelerated research by NASA has investigated the significant risks incurred during long-duration missions in microgravity for Space Flight-Associated Neuro-ocular Syndrome (SANS, formerly known as Visual Impairments associated with Increased Intracranial Pressure, VIIP) [1]. For our study, NASA's VESsel GENeration Analysis (VESGEN) was used to investigate the role of retinal blood vessels in the etiology of SANS/VIIP. The response of retinal vessels to microgravity was evaluated in astronaut crew members pre and post flight to the International Space Station (ISS), and compared to the response of retinal vessels in healthy volunteers to 6deg head-down tilt during 70 days of bed rest (HDTBR). For the study, we are testing the hypothesis that long-term cephalad fluid shifts resulting in ocular and visual impairments are necessarily mediated in part by retinal blood vessels, and therefore are accompanied by structural adaptations of the vessels. METHODS: Vascular patterns in the retinas of crew members and HDTBR subjects extracted from 30deg infrared (IR) Heidelberg Spectralis images collected pre/postflight and pre/post HDTBR, respectively, were analyzed by VESGEN (patent pending). VESGEN is a mature, automated software developed as a research discovery tool for progressive vascular diseases in the retina and other tissues. The multi-parametric VESGEN analysis generates maps of branching arterial and venous trees quantified by parameters such as the fractal dimension (Df, a modern measure of vascular space-filling capacity), vessel diameters, and densities of vessel length and number classified into specific branching generations according to vascular physiological branching rules. The retrospective study approved by NASA's Institutional Review Board included the analysis of bilateral retinas in eight ISS crew members monitored by routine occupational surveillance and six HDTBR subjects (NASA FARU Campaign 11, for example). The VESGEN analysis was conducted in a blinded fashion, with IR retinal images masked to the subject's identity, ophthalmic and clinical characteristics, and to the temporal sequence of image collection. To complete our study, VESGEN results will be analyzed statistically and correlated with other ophthalmic and medical findings. RESULTS: Preliminary results for changes in the pre to post status of vascular patterning in the retinas of crew members and HDTBR subjects are interestingly opposite. By Df and other vascular branching measures, the space-filling capacity of arterial and venous trees decreased in the majority of crew members (11/16 retinas). In contrast, vascular densities increased in HDTBR subjects by the same parameters (6/10 retinas). To conclude the study, biostatistics and medical analyses will be conducted to quantify and draw conclusions about how the changes associated with flight compare to those associated with HDTBR. CONCLUSIONS: Vascular densities appeared to decrease in the retinas of ISS crew members and increase in HDTBR subjects. Differences in arterial and venous response to cephalad fluid shifts induced by ISS and HDTBR may have resulted from a long-duration conditioning phenomenon (for example, 6-month ISS missions compared to 70 days HDTBR), or the presence of gravity in HDTBR compared to microgravity on the ISS. In addition, increased and decreased vessel diameters for Crew Members and HDTBR, respectively, are subject to limits of im
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN51750 , 2018 NASA Human Research Program Investigators'' Workshop; Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...