ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor function. Recovery was observed post HDBR but remained incomplete at 12 days post-HDBR. Preliminary findings from our parallel ongoing flight study will be compared and contrasted with bed rest results during this presentation.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-38007 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that are conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. We have collected data on several crewmembers and preliminary findings will be presented. Eventual comparison to results from our parallel bed rest study will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-38009 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from pre bed rest to the last day in bed rest. In contrast, connectivity within the default mode network remained stable over the course of bed rest. We also utilized a battery of behavioral measures including spatial working memory tasks and measures of functional mobility and balance. These behavioral measurements were collected before, during, and after bed rest. We will report the preliminary findings of correlations observed between brain functional connectivity and behavioral performance changes. Our results suggest that sensorimotor brain networks exhibit decoupling with extended periods of reduced usage. The findings from this study could aid in the understanding and future design of targeted countermeasures to alleviate the detrimental health and neurocognitive effects of long-duration spaceflight.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-32958 , Annual Neural Control of Movement Conference 2015; Apr 20, 2015 - Apr 24, 2015; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural equilibrium with HDT bed rest. This suggests that neuroplastic processes may facilitate adaptation to the HDT bed rest environment. The findings from this study provide novel insights into the neurobiology and future risk assessments of long-duration spaceflight.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-35041 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Exposure to the microgravity environment during spaceflight missions impacts crewmembers' sensorimotor function. Bock et al. [1] studied the cognitive demands of human sensorimotor performance and dual tasking during long duration missions and concluded that both stress and scarcity of cognitive resources required for sensorimotor adaptation may be responsible for these deficits during spaceflight. Therefore, in consideration of the health and performance of crewmembers in- and post-flight, we are conducting this study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. The data presented will focus on the behavioral measures that were collected pre-, in- and post-flight including spatial cognition, processing speed, bimanual coordination, functional mobility, computerized dynamic posturography (CDP), and vibrotactile induced vestibular evoked myogenic potential (VEMP). To date, data were collected over the course of two pre-flight sessions and four post-flight sessions on five crewmembers (n=13) using the protocol described in Koppelmans et al. [2]. Balance control was assessed using CDP, with eyes closed and a sway-referenced base of support (Sensory Organization Test 5), with and without head movements in the pitch plane. Spatial working memory was assessed using Thurston's Card Rotation Test and a Mental Rotation Test. The Rod and Frame Test was performed to test visual dependence. The Digit Symbol Substitution Test was performed to evaluate processing speed, and the Purdue Pegboard Task was performed to test bimanual coordination. Vestibular function was assessed by eliciting ocular VEMP via a hand held striker on the side of the head as subjects lay supine on a gurney. Subjects also performed the Functional Mobility Test of walking through an obstacle course to assess rate of early motor learning. Data were also collected on the same crewmembers during three in-flight sessions on the International Space Station (ISS). In-flight, spatial working memory was assessed using the Mental Rotation Test, adaptation to visuo-motor transformation in manual control was assessed using the Sensorimotor Adaptation Test, and multi-tasking ability was assessed using the Dual Task Test. These three tests were performed in a strapped-in configuration mimicking a seated position - waist bungees pulled the crewmember toward the "floor" with feet secured in foot loops. The Mental Rotation Test was also performed in a free-floating configuration while the crewmember floated while holding on to the gamepad controller used to provide input that was secured to the equipment rack on the ISS. Preliminary findings from data collected to date, will be included in the presentation. Eventual comparison to results from supporting bed rest and longitudinal studies will enable the parsing out of the multiple mechanisms contributing to any observed spaceflight-induced sensorimotor and cognitive behavioral changes.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-38016 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017) Annual Meeting; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts are affected will improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience greater challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a retrospective study, leveraging data already collected from relevant ongoing or completed bed rest and spaceflight studies. This data will be combined with predictor metrics that will be collected prospectively (as described for behavioral, brain imaging and genomic measures) from these returning subjects to build models for predicting post spaceflight and bed rest adaptive capability. In this presentation we will discuss the optimized set of tests for predictive metrics to be used for evaluating post mission adaptive capability as manifested in their outcome measures. Comparisons of model performance will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive ability, brain structure, brain function, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to mitigate the deleterious effects of spaceflight.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-38005 , Human Research Program Investigators'' Workshop; Jan 23, 2017 - Jan 27, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Exposure to the microgravity environment during a spaceflight mission impacts crewmembers' sensorimotor function. A study conducted by Bock et al. concluded that stress and scarcity of cognitive resources required for sensorimotor adaptation may be responsible for deficits during spaceflight. We are conducting this study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. The data presented will focus on the behavioral measures that were collected pre-, in- and post -flight.
    Keywords: Aerospace Medicine; Behavioral Sciences
    Type: JSC-CN-38516 , 2017 NASA Human Research Program Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...