ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • Aerodynamics  (4)
  • 1995-1999  (4)
  • 1965-1969
  • 1
    Publication Date: 2004-12-03
    Description: The Boeing Reference H configuration was tested in the NASA Ames 9x7 Supersonic Wind Tunnel. A simulated unstarted inlet was evaluated as well as the aerodynamic performance of the configuration with and without nacelle and diverter components. These experimental results were compared with computational results from the unstructured grid Euler flow solver AIRPLANE. The comparisons between computational and experimental results were good, and demonstrated that the Euler code is capable of efficiently and accurately predicting the changes in the aerodynamic coefficients associated with inlet unstart and the effects of the nacelle and diverter components.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1285-1325; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum angle, stretching ratios, etc.).
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 75-145; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: The objective of this study was to investigate compressibility effects on a high-lift flowfield by simulating the flow about a three-dimensional multi-element wing. The computations were performed by solving both the incompressible and compressible Navier-Stokes equations (using the INS3D and OVERFLOW codes) on structured, overset grids. Turbulence was modeled via the one-equation, fully turbulent Spalart-Allmaras model. The computational results were validated with surface pressure measurements acquired at the NASA Ames 7- by 10-Foot Wind Tunnel. The geometry used for all computations consisted of an unswept wing in a landing configuration with a half-span flap and a three-quarter-span slat mounted inside a rectangular duct approximating the wind tunnel walls. The solutions were carefully examined to account for effects due to differences in algorithms. Compressibility effects were demonstrated by comparing surface particle traces, sectional pressure coefficient and boundary layer profile plots. It was found that small regions of compressibility near the slat and main-element leading edge can largely impact the flow. Even small compressibility regions can have significant global effects on the circulation and separation of each of the high-lift elements.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Three high-lift configurations were computationally studied to assess the aerodynamic influence of slats. A flapped wing was simulated with no slat, a full-span slat, and a three quarter-span slat at a chord based Reynolds number of 3.7 million. The flows were computed using a compressible Navier-Stokes solver on structured grids with the Spalart-Allmaras turbulence model. All cases were compared with experimental data to validate the approach. The slats not only increase the lift generated by the wing but alter the topology of the flowfield considerably. The changes in the flow give insight into the working of a slat and contribute to a better understanding of high-lift flows in general.
    Keywords: Aerodynamics
    Type: 16th AIAA Applied Aerodynamics Conference; Jun 15, 1998 - Jun 18, 1998; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...