ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5001
    Keywords: AIDS ; DYANA ; HIV-1 ; NMR structure ; ribonuclease H ; RNA-DNA hybrid ; torsion angle dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A high-quality NMR solution structure of the chimeric hybrid duplex r(gcaguggc)⋅r(gcca)d(CTGC) was determined using the program DYANA with its recently implemented new module FOUND, which performs exhaustive conformational grid searches for dinucleotides. To ensure conservative data interpretation, the use of 1H-1H lower distance limit constraints was avoided. The duplex comprises the tRNA–DNA junction formed during the initiation of HIV-1 reverse transcription. It forms an A-type double helix that exhibits distinct structural deviations from a standard A-conformation. In particular, the minor groove is remarkably narrow, and its width decreases from about 7.5 Å in the RNA/RNA stem to about 4.5 Å in the RNA/DNA segment. This is unexpected, since minor groove widths for A-RNA and RNA/DNA hybrid duplexes of ∼11 Å and ∼8.5 Å, respectively, were previously reported. The present, new structure supports that reverse transcriptase-associated RNaseH specificity is related primarily to conformational adaptability of the nucleic acid in 'induced-fit'-type interactions, rather than the minor groove width of a predominantly static nucleic acid duplex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: High-resolution pollen records from Lake Baikal revealed considerable regional differences in the vegetation development and pronounced climate variability during the last glacial–interglacial transition and Holocene. Correlation between cores was successfully based on a chronology constructed from AMS 14C dating of pollen concentrates. Comparison to other radiocarbon-dated pollen sequences from the Baikal region suggests that the chronology presented is very reliable, and thus correlation to other dated events can easily be performed. Pollen indices, which reflect relative changes in major vegetation types and limitations of growing conditions by moisture availability and temperature, demonstrate near-synchronous vegetation changes, which suggest synchronous large-scale climate variation across the Baikal region. Due to the limited influence of human impact in the Lake Baikal region, the pollen data illustrate that, in the continental interior of NE Eurasia Holocene, climate variability was very pronounced. After initial warming and a strong increase in relative moisture (ca. 16 cal ka BP), the Bølling–Allerød-like event was punctuated by three cool and dry events. These events, dated between ca. 15 and 13 cal ka BP, can be compared to coolings as recorded in GISP 2 oxygen isotope records from Greenland ice cores. An expansion of Betula sect. Nanae/Fruticosae, Artemisia and Chenopodiaceae marks the Younger-Dryas (YD)-like cooling event (ca. 12.5–12 cal ka BP). High temperatures and favourable moisture conditions during the first part of Holocene favoured the optimum development of dark coniferous taiga between 11–7.5 cal ka BP in the south and 10–8 cal ka BP in the northeast. A fir and spruce decline in the southern mountains (ca. 9.5–8.5 cal ka BP) can be related to the 8.2 cal ka BP cooling event. The pronounced mid-Holocene cooling event and a transition towards dry conditions (ca. 8–7 cal ka BP) preceded the nearly synchronous regional expansion of pine taiga. Maximum distribution of Scots pine forests marks the Holocene thermal optimum (ca. 6.5–5.7 cal ka BP), which was followed by two subsequent cooling events (ca. 5.5–4.5 cal ka BP) at the Atlantic–Subboreal transition. A subsequent temperature optimum in the southeastern Baikal region ended with pronounced cooling during the Subboreal–Subatlantic transition (ca. 3–2.5 cal ka BP). A late spread of shrub alders may evidence the beginning of the Little Ice Age.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Abstract The Campi Flegrei caldera collapsed 39 ka in the Neapolitan area (southern Italy) after the Campanian Ignimbrite eruption. This eruption, recognized as the largest and the most cataclysmic volcanic event in the Mediterranean area over the past 200 ka, extruded not less than 300 km3 of trachytic magma. Controversy exists over the timescales required to assemble such large volume of silicic melt and thus whether large magmatic reservoirs can actually persist below active volcanic systems over prolonged periods of time. Uranium-series analyses have been performed on Campanian Ignimbrite whole-rocks, glass matrixes and separated minerals, and the obtained results have been interpreted in combination with data on Sr, Nd, and Pb isotopes from literature. The compositionally most evolved sample which is most radiogenic with respect to Sr isotopes records a reference age of 71 ka. By contrast, U–Th internal isochrones of the three compositionally least evolved samples give identical initial Th isotope ratios and yield consistent ages predating the eruption by up to 6.4 ka. The highest Pb and Nd isotopic ratios and 230Th/232Th activity ratios together with the oldest reference age of the most evolved samples suggest the existence of a resident magma body possibly related to a magmatic system that is known to have fed earlier magmatic activity in the Campi Flegrei area. Conversely, the younger age of the least evolved and least radiogenic magma dates the crystallization/differentiation event of a chemically and isotopically new magma batch entering the reservoir of the resident magma some few thousand years before the cataclysmic eruption. Therefore, the time preceding this large caldera-forming eruption during which the large volume of Campanian Ignimbrite magma assembled and mixed is 6.4 ± 2.1 ka.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...