Skip to main content
Log in

NMR structure of the chimeric hybrid duplex r(gcaguggc)⋅r(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A high-quality NMR solution structure of the chimeric hybrid duplex r(gcaguggc)⋅r(gcca)d(CTGC) was determined using the program DYANA with its recently implemented new module FOUND, which performs exhaustive conformational grid searches for dinucleotides. To ensure conservative data interpretation, the use of 1H-1H lower distance limit constraints was avoided. The duplex comprises the tRNA–DNA junction formed during the initiation of HIV-1 reverse transcription. It forms an A-type double helix that exhibits distinct structural deviations from a standard A-conformation. In particular, the minor groove is remarkably narrow, and its width decreases from about 7.5 Å in the RNA/RNA stem to about 4.5 Å in the RNA/DNA segment. This is unexpected, since minor groove widths for A-RNA and RNA/DNA hybrid duplexes of ∼11 Å and ∼8.5 Å, respectively, were previously reported. The present, new structure supports that reverse transcriptase-associated RNaseH specificity is related primarily to conformational adaptability of the nucleic acid in 'induced-fit'-type interactions, rather than the minor groove width of a predominantly static nucleic acid duplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anil Kumar, Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.

    Google Scholar 

  • Arnott, S., Chandrasekaran, R., Millane, R.P. and Park, H.-S. (1986) J. Mol. Biol., 188, 631–640.

    Google Scholar 

  • Babcock, M.S., Pednault, E.P.D. and Olson, W.K. (1994) J. Mol. Biol., 237, 125–156.

    Google Scholar 

  • Bachelin, M., Hessler, G., Kurz, G., Hacia, J.G., Dervan, P.B. and Kessler, H. (1998) Nat. Struct. Biol., 5, 271–275.

    Google Scholar 

  • Baltimore, D. (1970) Nature, 226, 1209–1211.

    Google Scholar 

  • Ban, C., Ramakrishnan, B. and Sundaralingam, M. (1992) Curr. Opin. Struct. Biol., 5, 282–295.

    Google Scholar 

  • Bartels, C., Xia, T., Billeter, M., Güntert, P. and Wüthrich, K. (1995) J. Biomol. NMR, 6, 1–10.

    Google Scholar 

  • Bebenek, K., Beard, W. A., Darden, T. A., Li, L., Prasard, R., Luton, B.A., Gorenstein, D.A., Wilson, S.H. and Kunkel, T.A. (1997) Nat. Struct. Biol., 4, 194–197.

    Google Scholar 

  • Blain, S.W. and Goff, S.P. (1993) J. Biol. Chem., 268, 23585–23592.

    Google Scholar 

  • Cheatham, T.E. and Kollman, P.A. (1996) J. Am. Chem. Soc., 119, 4805–4825.

    Google Scholar 

  • Chuprina, V.P., Fedoroff, O.Y. and Reid, B.R. (1991a) Biochemistry, 30, 561–568.

    Google Scholar 

  • Chuprina, V.P., Lipanov, A.A., Fedoroff, O.Y., Kim, S.-G., Kintanar, A. and Reid, B.R. (1991b) Proc. Natl. Acad. Sci. USA, 88, 9087–9091.

    Google Scholar 

  • Davies, J.F., Hostomska, Z., Hostomsky, Z., Jordan, S.R. and Matthews, D.A. (1991) Science, 252, 88–95.

    Google Scholar 

  • DeMesmaeker, A., Altmann, K.-H., Waldner, A. and Wendeborn, S. (1995) Curr. Opin. Struct. Biol., 5, 343–355.

    Google Scholar 

  • Dickerson, R.E. (1992) Methods Enzymol., 211, 67–111.

    Google Scholar 

  • Ding, J., Jacobo-Molina, A., Tantillo, C., Lu, X., Nanni, R.C. and Arnold, E. (1994) J. Mol. Recogn., 7, 157–161.

    Google Scholar 

  • Dock-Bregeon, A.C., Chevrier, B., Podjarny, A., Johnson, J., de-Bear, J.S., Gough, G.R., Gilham, P.T. and Moras, D. (1989) J. Mol. Biol., 209, 459–474.

    Google Scholar 

  • Egli, M., Usman, N., Zhang, S. and Rich, A. (1992) Proc. Natl. Acad. Sci. USA, 89, 534–538.

    Google Scholar 

  • Egli, M., Usman, N. and Rich, A. (1993) Biochemistry, 32, 3221–3273.

    Google Scholar 

  • Egli, M., Portmann, S. and Usman, N. (1996) Biochemistry, 35, 8489–8494.

    Google Scholar 

  • Fedoroff, O.Y., Salazar, M. and Reid, B.R. (1993) J. Mol. Biol., 233, 509–523.

    Google Scholar 

  • Fedoroff, O.Y., Salazar, M. and Reid, B.R. (1996) Biochemistry, 35, 11070–11080.

    Google Scholar 

  • Fedoroff, O.Y., Ge, Y. and Reid, B.R. (1997) J. Mol. Biol., 269, 225–239.

    Google Scholar 

  • Fernández, C., Szyperski, T., Bruyére, T., Ramage, P., Mösinger, E. and Wüthrich, K. (1997) J. Mol. Biol., 266, 576–593.

    Google Scholar 

  • Furfine, E.S. and Reardon, J.E. (1991) Biochemistry, 30, 7041–7046.

    Google Scholar 

  • González, C., Stec, W., Kobylanska, A., Hogrefe, R.I., Reynolds, M. and James, T.L. (1994) Biochemistry, 33, 11062–11072.

    Google Scholar 

  • Gorenstein, D.G., Schroeder, S.A., Fu, J.M., Metz, J.T., Roongta, V. and Jones, C.R. (1988) Biochemistry, 27, 7223–7237.

    Google Scholar 

  • Götte, M., Fackler, S., Hermann, T., Perola, E., Cellai, L., Gross, H.J., Le Grice, S.F.J. and Heumann, H. (1995) EMBO J., 14, 833–841.

    Google Scholar 

  • Griesinger, C., Sørensen, O. and Ernst, R.R. (1985) J. Am. Chem. Soc., 107, 6394–6396.

    Google Scholar 

  • Griesinger, C., Otting, G., Wüthrich, K. and Ernst, R.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • Guéron, M. and Leroy, J.L. (1995) Methods Enzymol., 261, 383–413.

    Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517–530.

    Google Scholar 

  • Güntert, P., Dötsch, V., Wider, G. and Wüthrich, K. (1992) J. Biomol. NMR, 2, 619–629.

    Google Scholar 

  • Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997) J. Mol. Biol., 273, 283–298.

    Google Scholar 

  • Güntert, P., Billeter, M., Ohlenschläger, O., Brown, L.R. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 543–548.

    Google Scholar 

  • Han, G.W., Kopka, M.L., Cascio, D., Grzeskowiak, K. and Dickerson, R.E. (1997) J. Mol. Biol., 269, 811–826.

    Google Scholar 

  • Hartmann, B. and Lavery, R. (1996) Q. Rev. Biophys., 29, 309–368.

    Google Scholar 

  • Horton, N.C. and Finzel, B.C. (1996) J. Mol. Biol., 264, 521–533.

    Google Scholar 

  • Hostomsky, Z., Hughes, S.H., Goff, S.P. and Le Grice, S.F.J. (1994) J. Virol., 68, 1970–1971.

    Google Scholar 

  • Isel, C., Landry, J.M., LeGrice, S.F., Ehresmann, C., Ehresmann, B. and Marquet, R. (1996) EMBO J., 15, 917–924.

    Google Scholar 

  • Jacobo-Molina, A., Ding, J., Nanni, R.G., Clark, A.D., Lu, X., Tantillo, C., Williams, R.L., Kamer, G., Ferris, A.L., Clark, P., Hizi, A., Hughes, S.H. and Arnold, E. (1993) Proc. Natl. Acad. Sci. USA, 90, 6320–6324.

    Google Scholar 

  • Kanaya, E. and Kanaya, S. (1995) Eur. J. Biochem., 231, 557–562.

    Google Scholar 

  • Kennard, O. and Hunter, W.N. (1991) Angew. Chem. Int. Ed. Engl., 30, 1254–1277.

    Google Scholar 

  • Kiefer, J.R., Mao, C., Braman, J.C. and Beese, L.S. (1998) Nature, 391, 304–307.

    Google Scholar 

  • Kim, S.-G., Lin, L.-J. and Reid, B.R. (1992) Biochemistry, 31, 3564–3574.

    Google Scholar 

  • Klinck, R., Sprules, T. and Gehring, K. (1997) Nucleic Acid Res., 25, 2120–2137.

    Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51–55.

    Google Scholar 

  • Lanchy, J.-M., Ehresmann, C., Le Grice, S.F.J., Ehresmann, B. and Marquet, R. (1996) EMBO J., 15, 7178–7187.

    Google Scholar 

  • Lane, A.N., Ebel, S. and Brown, T. (1993) Eur. J. Biochem., 215, 297–306.

    Google Scholar 

  • Liepinsh, E., Otting, G. and Wüthrich, K. (1992) Nucleic Acid Res., 20, 6549–6553.

    Google Scholar 

  • Luginbühl, P., Güntert, P., Billeter, M. and Wüthrich, K. (1996) J. Biomol. NMR, 8, 136–146.

    Google Scholar 

  • Mak, J. and Kleiman, L. (1997) J. Virol., 71, 8087–8095.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer III, A.G. (1995) J. Mol. Biol., 246, 144–162.

    Google Scholar 

  • Marino, J.P., Schwalbe, H., Glaser, S.J. and Griesinger, C. (1996) J. Am. Chem. Soc., 118, 4388–4395.

    Google Scholar 

  • Marquet, R., Isel, C., Ehresmann, C. and Ehresmann, B. (1995) Biochimie, 77, 113–124.

    Google Scholar 

  • Müller, U., Maier, G., Onori, A.M., Cellai, L., Heumann, H. and Heinemann, U. (1998) Biochemistry, 37, 12005–12011.

    Google Scholar 

  • Nakamura, H., Oda, Y., Iwai, S., Inoue, H., Ohtsuka, E., Kanaya, S., Kimura, S., Katsuda, C., Katayanagi, K., Morikawa, K., Miyashiro, H. and Ikehara, M. (1991) Proc. Natl. Acad. Sci. USA, 88, 11535–11539.

    Google Scholar 

  • Nelson, H.C.M., Finch, J.T., Bonaventura, F.L. and Klug, A. (1986) Nature, 330, 221–226.

    Google Scholar 

  • Nishizaki, T., Iwai, S., Ohkubo, T., Kojima, C., Nakamura, H., Kyogoku, Y. and Ohtsuka, E. (1995) Biochemistry, 34, 4016–4025.

    Google Scholar 

  • Otting, G., Orbons, L.P.M. and Wüthrich, K. (1990) J. Magn. Reson., 89, 423–430.

    Google Scholar 

  • Piotto, M., Saudek, V. and Sklenář, V. (1992) J. Biomol. NMR, 2, 661–665.

    Google Scholar 

  • Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 117, 479–485.

    Google Scholar 

  • Ravishankar, G., Swaminathan, S., Beveridge, D.L., Lavery, R. and Sklenar, H. (1988) J. Biomol. Struct. Dyn., 6, 669–699.

    Google Scholar 

  • Salazar, M., Fedoroff, O.Y., Zhu, L. and Reid, B.R. (1994) J. Mol. Biol., 241, 440–455.

    Google Scholar 

  • Salazar, M., Fedoroff, O.Y. and Reid, B.R. (1996) Biochemistry, 35, 8126–8135.

    Google Scholar 

  • Sklénař, V. and Bax, A. (1987) J. Magn. Reson., 74, 469–474.

    Google Scholar 

  • Smith, J.S. and Roth, M.J. (1992) J. Biol. Chem., 267, 15071–15079.

    Google Scholar 

  • Szyperski, T., Güntert, P., Otting, G. and Wüthrich, K. (1992) J. Magn. Reson., 99, 552–560.

    Google Scholar 

  • Szyperski, T., Fernández, C., Ono, A., Kainosho, M. and Wüthrich, K. (1998) J. Am. Chem. Soc., 120, 821–822.

    Google Scholar 

  • Telesnitsky, A. and Goff, S.P. (1997) Retroviruses (Eds, Coffin, J.M., Hughes, S.H. and Varmus, H.E.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A., pp. 21–160.

    Google Scholar 

  • Temin, H.M. and Mizutani, S. (1970) Nature, 226, 1211–1213.

    Google Scholar 

  • Varani, G. and Tinoco Jr., I. (1991) Q. Rev. Biophys., 24, 479–532.

    Google Scholar 

  • Wahl, M.C. and Sundaralingam, M. (1995) Curr. Opin. Struct. Biol., 5, 282–295.

    Google Scholar 

  • Wang, A.C., Kim, S.G., Flynn, P.F., Chou, S.-H., Orba, J. and Reid, B.R. (1992) Biochemistry, 31, 3940–3946.

    Google Scholar 

  • Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A. (1986) J. Comput. Chem., 7, 230–252.

    Google Scholar 

  • Wijmenga, S.S., Mooren, M.M.W. and Hilbers, C. (1993) In NMR of Macromolecules. A Practical Approach (Ed., Roberts, G.C.K.), Oxford University Press, Oxford, U.K., pp. 217–283.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY, U.S.A.

    Google Scholar 

  • Zhu, L., Salazar, M. and Reid, B.R. (1995) Biochemistry, 34, 2372–2380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szyperski, T., Götte, M., Billeter, M. et al. NMR structure of the chimeric hybrid duplex r(gcaguggc)⋅r(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription. J Biomol NMR 13, 343–355 (1999). https://doi.org/10.1023/A:1008350604637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008350604637

Navigation