ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 238U–230Th disequilibrium  (1)
  • Clay minerals
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2021-06-30
    Description: The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W‐Fall (130 +16/−14 ka) and I‐Fall eruptions (56 +8.2/−7.7 ka), which under‐ and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for 〉80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI 〉 8), which confirms the LCY eruption as the first‐ever recognized supereruption in Central America.
    Description: Deutsche Forschungsgemeinschaft SCH 2521/6‐1
    Keywords: 551.701 ; 238U–230Th disequilibrium ; geochronology ; tephrochronology ; (U–Th)/He ; zircon
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 505–521, doi:10.1002/2014GC005586.
    Description: The Late Quaternary variability of the South Asian (or Indian) monsoon has been linked with glacial-interglacial and millennial scale climatic changes but past rainfall intensity in the river catchments draining into the Andaman Sea remains poorly constrained. Here we use radiogenic Sr, Nd, and Pb isotope compositions of the detrital clay-size fraction and clay mineral assemblages obtained from sediment core NGHP Site 17 in the Andaman Sea to reconstruct the variability of the South Asian monsoon during the past 60 kyr. Over this time interval εNd values changed little, generally oscillating between −7.3 and −5.3 and the Pb isotope signatures are essentially invariable, which is in contrast to a record located further northeast in the Andaman Sea. This indicates that the source of the detrital clays did not change significantly during the last glacial and deglaciation suggesting the monsoon was spatially stable. The most likely source region is the Irrawaddy river catchment including the Indo-Burman Ranges with a possible minor contribution from the Andaman Islands. High smectite/(illite + chlorite) ratios (up to 14), as well as low 87Sr/86Sr ratios (0.711) for the Holocene period indicate enhanced chemical weathering and a stronger South Asian monsoon compared to marine oxygen isotope stages 2 and 3. Short, smectite-poor intervals exhibit markedly radiogenic Sr isotope compositions and document weakening of the South Asian monsoon, which may have been linked to short-term northern Atlantic climate variability on millennial time scales.
    Description: Part of this work was funded by German Science Foundation (DFG), grant HA5751/3-1.
    Description: 2015-08-24
    Keywords: Marine sediments ; Clay minerals ; Radiogenic isotopes ; Andaman Sea ; South Asian monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...