ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 12-tungstophosphoric acid  (1)
  • Adenosine/*analogs & derivatives/metabolism/pharmacology  (1)
  • 1
    Publication Date: 2013-11-29
    Description: N(6)-methyladenosine (m(6)A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m(6)A modification remains to be determined. The recent discovery of two m(6)A demethylases in mammalian cells highlighted the importance of m(6)A in basic biological functions and disease. Here we show that m(6)A is selectively recognized by the human YTH domain family 2 (YTHDF2) 'reader' protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m(6)A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m(6)A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m(6)A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877715/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877715/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiao -- Lu, Zhike -- Gomez, Adrian -- Hon, Gary C -- Yue, Yanan -- Han, Dali -- Fu, Ye -- Parisien, Marc -- Dai, Qing -- Jia, Guifang -- Ren, Bing -- Pan, Tao -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- GM088599/GM/NIGMS NIH HHS/ -- K01 HG006699/HG/NHGRI NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM088599/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jan 2;505(7481):117-20. doi: 10.1038/nature12730. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, UCSD Moores Cancer Center and Institute of Genome Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. ; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA [2] Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284625" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism/pharmacology ; Base Sequence ; DNA-Binding Proteins/genetics ; HeLa Cells ; Humans ; Nucleotide Motifs ; Organelles/genetics/metabolism ; Protein Binding ; Protein Biosynthesis ; *RNA Stability/drug effects ; RNA Transport ; RNA, Messenger/*chemistry/*metabolism ; RNA, Untranslated/chemistry/metabolism ; RNA-Binding Proteins/chemistry/classification/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Reaction kinetics and catalysis letters 63 (1998), S. 349-354 
    ISSN: 1588-2837
    Keywords: 12-tungstophosphoric acid ; cesium salts of tungstophosphoric acid ; pentane isomerization and superacidity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract H3PW12O40 and its acidic cesium salts are catalytically active for pentane isomerization at ambient temperature. The influence of activation temperature and Cs content of the catalysts on their activity and selectivity have been investigated and discussed in relation to textural properties and surface acidity. H3PW12O40 and Cs2.25H0.75PW12O40 are superacidic as evaluated by measuring the rate constants of pentane isomerization at 35°C. Their acid strengths are in the range of H0=−13∼−12.4.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...