ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-12
    Description: L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel primo semestre 2019.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: 4V. Processi pre-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Keywords: Campi Flegrei ; Vesuvio ; Ischia ; Volcano Monitoring ; 04.06. Seismology ; 04.03. Geodesy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-06
    Description: L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel secondo semestre 2019.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: 4V. Processi pre-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 2IT. Laboratori analitici e sperimentali
    Description: 4IT. Banche dati
    Keywords: Campi Flegrei ; Vesuvio ; Ischia ; Volcano Monitoring ; 04.06. Seismology ; 04.03. Geodesy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-05
    Description: Hydrothermal systems with active surface expressions are important natural source of atmospheric mercury. Here we report on the first simultaneous assessment of gaseous elemental mercury (GEM) and major volatiles (H2S and CO2) fluxes from the fumarolic system of Pisciarelli, currently the most active at the Campi Flegrei caldera (CFc), Naples (Italy). Thiswas achieved via a GPS-synchronized Lumex and MultiGAS surveywhich extends similar investigations reported elsewhere. GEM concentrations measured in the fumarolic emissions were consistently above background air level close to the degassing area (mean ~ 8 ± 3 ng m−3 on average) and ranged up to 12,000 ng m−3. Our data evidenced pulsed sequences of GEM increases in the fumarole plume, closely matched by temporally consistent increases in CO2 and H2S (r2 =0.9), supporting the idea that major volatiles, such as CO2 acts as potential carrier in transporting GEM within the magmatic/hydrothermal systems. The slope of the best fit calculated for the dispersion of our data provides a GEM/CO2 molar ratio of 1.1 × 10−8 and a GEM/H2S of5×10−6, respectively. These ratios are comparable to those reported for both low(~ 100 °C) and high-T (~250 °C) fumaroles from non-explosive volcanic/hydrothermal degassing systems elsewhere. We adopted an adhoc method that combines video footages and gas measurements to obtain high precision concentration maps of gas emissions used to estimate the total atmospheric GEM, CO2 and H2S flux of about 0.0113, 225059 and 511 t y−1, respectively. The human health risk assessment related to the GEM emissions at Pisciarelli, confirms that, except for the degassing fumarolic area, all the main sites affected by the plume dispersion, always remain well below the safe threshold recommended by the health authorities.
    Description: This study has benefited from funding provided by the Italian Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri (DPC). This paper does not necessarily represent DPC official opinion and policies.
    Description: Published
    Description: 107074
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Pisciarelli, Gaseous mercury, Multigas, Lumex,Volatiles, Atmospheric dispersion, Campi Flegrei ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-16
    Description: Muography consists in observing the differential absorption of muons - elementary particles produced through cosmic-ray interactions in the Earth atmosphere - going through the volcano and can attain a spatial resolution of tens of meters. We present here the first experiment of nuclear emulsion muography at the Stromboli volcano. Muons have been recorded during a period of five months by a detector of 0.96 m2 area. The emulsion films were prepared at the Gran Sasso underground laboratory and were analyzed at Napoli, Salerno and Tokyo scanning laboratories. Our results highlight a significant low-density zone at the summit of the volcano with density contrast of 30-40% with respect to bedrock. The structural setting of this part of the volcanic edifice controls the eruptive dynamics and the stability of the "Sciara del Fuoco" slope, which is affected by recurrent tsunamigenic landslides. Periodical imaging of the summit of the Stromboli volcano such as that provided by muography can become a useful method for studying the evolution of the internal structure of the volcanic edifice.
    Description: Published
    Description: id 6695
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Muon radiography ; Muography ; Stromboli ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-16
    Description: We present the main features of the permanent monitoring system managed by the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Vesuviano in the Campi Flegrei caldera. Eruptive history of this active volcano shows that the majority of the eruptive events has been characterised by high explosivity and was accompanied by pyroclastic density currents. Its last eruption occurred in AD 1538 and in the next centuries the Campi Flegrei caldera has experienced several episodes of bradyseism and also the progressive increasing of the urbanisation in the area (west of Naples). Monitoring the dynamics of a mainly explosive volcano completely embedded in a very populated area is a challenging task. In order to detect any variation in the physical and chemical parameters of the Campi Flegrei caldera, the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Vesuviano manages a permanent multi-parametric monitoring system. All the recorded h24 continuous data are transmitted to the Monitoring Room of the Osservatorio Vesuviano in Naples, where they are acquired, processed and evaluated to define changes in the dynamical state of the volcano. The caldera, since the end of 2004, is experiencing a bradyseismic episode characterised by a low velocity rate uplift, low energy earthquakes and increasing in the magmatic components of fumarolic fluids. The monitoring and surveillance activity of the Campi Flegrei caldera plays a crucial role in the volcanic emergency plan that includes evacuation of approximately 500,000 people before the beginning of the eruption.
    Description: Published
    Description: 219-237
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 2IT. Laboratori analitici e sperimentali
    Description: 4IT. Banche dati
    Keywords: Campi Flegrei ; Seismic Network ; cGNSS Network ; Tiltmeter Network ; Thermal Infrared Imagery Network ; Geochemical Network ; 04.03. Geodesy ; 04.06. Seismology ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-06
    Description: Studying seismicity in a volcanic environment provides important information on the state of activity of volcanoes. The seismicity of the Neapolitan volcanoes, Campi Flegrei, Vesuvius, and Ischia, shows distinctive characteristics for each volcano, coveringwide range of patterns and types. In this study we relocated some significant volcano- tectonic earthquake swarms that occurred in Campi Flegrei and Vesuvius. Moreover, we compared the earthquake occurrence evolution, the magnitude and the seismic energy release of the three volcanoes. Also, we considered the results of seismic analysis in the light of geochemical and ground deformation data that contribute to defining the state of activity of volcanoes. In Campi Flegrei, which is experiencing a long term unrest, we identified a seismogenic structure at shallow depth in Pisciarelli zone that has been activated repeatedly. The increasing seismicity accompanies an escalation of the hydrothermal activity and a ground uplift phase. At Vesuvius a very shallow seismicity is recorded, which in recent years has shown an increase in terms of the number of events per year. Earthquakes are usually located right beneath the crater axis. They are concentrated in a volume affected by the hydrothermal system. Finally, Ischia generally shows a low level of seismicity, however, in Casamicciola area events with a moderate magnitude can occur and these are potentially capable of causing severe damage to the town and population, due to their small hypocentral depth (typically 〈 2.5 km). After the seismic crisis of August 21, 2017 (mainshock magnitude M 4), the seismicity returned to a low level in terms of occurrence rate and magnitude of earthquakes. The seismicity of these three different volcanic areas shows some common aspects that highlight a relevant role of hydrothermal processes in the seismogenesis of volcanic areas. However, while the main swarms in Campi Flegrei and most of the Vesuvian earthquakes are distributed along conduit-like structures, the seismicity of Ischia is mainly located along faults. Furthermore, the temporal evolution of seismicity in Neapolitan volcanic area suggests a concomitant increase in the occurrence of earthquakes both in Campi Flegrei and Vesuvius in recent years.
    Description: Published
    Description: 662113
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-11
    Description: Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/ heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance considerations,we showhydrothermal pressurization is causing energy transfer from the fluids to the host rocks, ultimately triggering low magnitude earthquakes within a seismogenetic volume containing the hydrothermal system. This mechanism is probably common to other worldwide calderas in similar hydrothermal activity state.
    Description: MIUR project n. PRIN2017-2017LMNLAW“Connect4Carbon”
    Description: Published
    Description: 107245
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: CO2 emission ; Campi Flegrei ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-25
    Description: Abstract: Muon radiography is a technique based on the measurement of absorption profiles of muons as they pass through matter. This measurement allows to obtain an image of the inner structure of large volume objects and is suitable to be applied in several fields, such as volcanology, archaeology and civil engeneering. One of the main applications concerns the study of volcanic structures; indeed it is possible to use this technique to measure the mass distribution inside the edifice of a volcano providing useful information to better understand the possible eruption mechanisms. The MURAVES (MUon RAdiography of VESuvius) project aims to the study of the summital cone of Mt. Vesuvius near Naples in Italy, one of the most dangerous active volcanoes in the world. The MURAVES apparatus is a modular, robust muon hodoscope system with a low power consumption, optimized to be used in inhospitable environments like the surroundings of volcanoes. The complete detection system is an array of identical tracking modules, each with an area of 1 m2 , based on the use of plasic scintillators. The technologies, the status and the data analysis strategy of the experiment will be presented in this paper.
    Description: Published
    Description: C03014
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Muography, Vesuvius ; Interaction of radiation with matter ; Scintillators and scintillating fibres and light guides ; Detector cooling and thermo-stabilization ; Simulation methods and programs ; 05.04. Instrumentation and techniques of general interest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-14
    Description: Two paroxysmal explosions occurred at Stromboli on July 3 and August 28, 2019, the first of which caused the death of a young tourist. After the first paroxysm an effusive activity began from the summit vents and affected the NW flank of the island for the entire period between the two paroxysms. We carried out an unsupervised analysis of seismic and infrasonic data of Strombolian explosions over 10 months (15 November 2018–15 September 2019) using a Self- Organizing Map (SOM) neural network to recognize changes in the eruptive patterns of Stromboli that preceded the paroxysms. We used a dataset of 14,289 events. The SOM analysis identified three main clusters that showed different occurrences with time indicating a clear change in Stromboli’s eruptive style before the paroxysm of 3 July 2019. We compared the main clusters with the recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, and found that the clusters are associated with different types of Strombolian explosions and different deformation patterns of the summit area. Our findings provide new insights into Strombolian eruptive mechanisms and new perspectives to improve the monitoring of Stromboli and other open conduit volcanoes.
    Description: This work was supported by the project Progetto Strategico Dipartimentale INGV 2019 “Forecasting eruptive activity at Stromboli volcano: timing, eruptive style, size, intensity and duration” (FIRST). This work is also supported by a Marie Sklodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under Contract Number 765710 INSIGHTS. This work benefited from the EU (DG ECHO) Project EVE n. 826292. This work has been partially supported by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection; Scientific Responsibility: N.C.). However, this publication does not necessarily represent the official opinion and policies of the department.
    Description: Published
    Description: 1287
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: eruption precursors ; Stromboli volcano ; neural networks ; self-organizing map ; seismo-acoustic signals ; volcano monitoring ; ground-based visible and thermal imagery ; ground deformation ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-08-22
    Description: Open conduit volcanoes like Stromboli can display elusive changes in activity before major eruptive events. Starting on December 2020, Stromboli volcano displayed an increasing eruptive activity, that on 19 May 2021 led to a crater-rim collapse, with pyroclastic density currents (PDCs) that spread along the barren NWflank, entered the sea and ran across it for more than 1 km. This episode was followed by lava flow output from the crater rim lasting a few hours, followed by another phase of lava flow in June 2021. These episodes are potentially very dangerous on island volcanoes since a landslide of hot material that turns into a pyroclastic density current and spreads on the sea surface can threaten mariners and coastal communities, as happened at Stromboli on 3 July and 28 August 2019. In addition, on entering the sea, if their volume is large enough, landslides may trigger tsunamis, as occurred at Stromboli on 30 December 2002. In this paper, we present an integration of multidisciplinary monitoring data, including thermal and visible camera images, ground deformation data gathered from GNSS, tilt, strainmeter and GBInSAR, seismicity, SO2 plume and CO2 ground fluxes and thermal data from the ground and satellite imagery, together with petrological analyses of the erupted products compared with samples from previous similar events. We aim at characterizing the preparatory phase of the volcano that began on December 2020 and led to the May–June 2021 eruptive activity, distinguishing this small intrusion of magma from the much greater 2019 eruptive phase, which was fed by gas-rich magma responsible for the paroxysmal explosive and effusive phases of July–August 2019. These complex eruption scenarios have important implications for hazard assessment and the lessons learned at Stromboli volcano may prove useful for other open conduit active basaltic volcanoes.
    Description: This research was funded by the Project FIRSTForecastIng eRuptive activity at Stromboli volcano: Timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020). This research was funded by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile,” through the UniFi-DPC 2019-2021 agreement (Scientific Responsibility: N.C.).
    Description: Published
    Description: 899635
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli volcano ; multi-disciplinary monitoring data ; crater-rim collapse ; pyroclastic density current ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...