ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-07
    Description: We present a new method for measuring SO2 with the data from the ASTER (Advanced Spaceborne Thermal Emission and Reflectance radiometer) orbital sensor. The method consists of adjusting the SO2 column amount until the ratios of radiance simulated on several ASTER bands match the observations. We present a sensitivity analysis for this method, and two case studies. The sensitivity analysis shows that the selected band ratios depend much less on atmospheric humidity, sulfate aerosols, surface altitude and emissivity than the raw radiances. Measurements with b25% relative precision are achieved, but only when the thermal contrast between the plume and the underlying surface is higher than 10 K. For the case studies we focused on Miyakejima and Etna, two volcanoes where SO2 is measured regularly by COSPEC or scanning DOAS. The SO2 fluxes computed from a series of ten images of Miyakejima over the period 2000–2002 is in agreement with the long term trend of measurement for this volcano. On Etna, we compared SO2 column amounts measured by ASTER with those acquired simultaneously by ground-based automated scanning DOAS. The column amounts compare quite well, providing a more rigorous validation of the method. The SO2 maps retrieved with ASTER can provide quantitative insights into the 2D structure of non-eruptive volcanic plumes, their dispersion and their progressive depletion in SO2.
    Description: R.C. was supported by a grant from F.R.I.A (Fond pour la Recherche Industrielle et Appliquée). GGS acknowledges a PhD grant funded by the project “Sviluppo di sistemi di monitoraggio” funded by Dipartimento di Protezione Civile della Regione Sicilia, INGV (Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania—Italy) and NOVAC (Network for Observation of Volcanic and Atmospheric Change) EU-funded FP6 project no. 18354. P-F. C. is research associate with FRS-FNRS and benefited from its financial support (F.4511.08).
    Description: Published
    Description: 42-54
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: remote sensing, SO2, ASTER, DOAS, Etna, Miyakejima ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-27
    Description: We report the first combined measurements of the composition and flux of gas emitted from Nyiragongo volcano by ground-based remote-sensing techniques. Ultraviolet spectroscopic measurements made in May/June 2005 and January 2006 indicate average SO2 emission rates of 38 kg s−1 and 23 kg s−1, respectively. Open-path Fourier transform infrared spectroscopic measurements obtained in May/June 2005, January 2006, and June 2007 indicate average molar proportions of 70, 24, 4.6, 0.87, 0.26, 0.11, and 0.0016% for H2O, CO2, SO2, CO, HCl, HF, and OCS, respectively. The composition of the plume was remarkably similar in 2005, 2006, and 2007, with little temporal variation in proportions of CO2, SO2, and CO, in particular, on the scale of seconds or days or even between the three field campaigns that span a period of 24 months. This stability persisted despite a wide range of degassing behaviors on the surface of the summit crater's lava lake (including discrete strombolian bursts and lava fountains) and variations in the SO2 emission rate. We explain these observations by a regime of steady state degassing in which bubbles nucleate and ascend in chemical equilibrium with the convecting magma. Short-term (seconds to minutes) temporal fluctuations in the SO2–HCl–HF composition were observed, and these are attributed to shallow degassing processes.
    Description: Published
    Description: Q02017
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Nyiragongo ; volcanic gas emissions ; FTIR ; DOAS ; remote sensing ; spectroscopy ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-23
    Description: L’Unità Funzionale Vulcanologia e Geochimica della Sezione di Catania dell’INGV sta sviluppando una nuova tecnologia che permette il monitoraggio in continuo del Radon, un gas che cambia la sua concentrazione in dipendenza del flusso di gas dal suolo. Visto che il tasso di emissione di radon dal suolo è dipendente dalla dinamica sia del magma che delle faglie, si tratta di un parametro che ha una forte potenzialità per la sorveglianza dei vulcani. Per tale motivo l’INGV, nell’ambito della Convenzione 2004-2005 con il Dipartimento della Protezione Civile, ha finanziato un progetto mirato proprio allo sviluppo tecnologico e scientifico di questo tipo di ricerca (progetto V3_6/28 – Etna, coordinatori S. Gresta e P. Papale, resp. M. Neri), la cui prima fase è iniziata il 1° giugno 2005. Questa iniziale fase di lavoro si è concretizzata con l’installazione di una prima sonda tipo “barasol” per la misura continua dell’attività di radon nel suolo presso Torre del Filosofo. Una seconda sonda, acquistata con fondi della Sezione Roma 1 dell’INGV (resp. F. Quattrocchi), è stata installata nei pressi del piano di faglia della Pernicana (quota ~1500 m s.l.m.). Una terza sonda, acquistata con fondi della Sezione Catania dell’INGV, è stata installata nei pressi di Dagala. La presente nota descrive quest’ultima installazione.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: open
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Format: 412816 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We report on the first period of the 2002 Etna eruption started on 27th October and ended on 5th November, occurring 15 months after the end of the 2001 eruption. Volcanological and geochemical data are presented in order to characterize the complex intrusion mechanism that contemporaneously involved the NE and S flanks of the volcano. Preliminary data outline that two distinct magma intrusions fed the eruptive fissures. Strong fire fountain activity mainly from the S fissure, produced copious ash fall in eastern Sicily, causing prolonged closure of Catania and Reggio Calabria airports. Lava emitted from the NE fissure formed a 6.2 km long lava flow field that destroyed the tourist facilities of Piano Provenzana area and part of Linguaglossa pine forest.
    Description: Published
    Description: 1-10
    Description: reserved
    Keywords: Volcanic eruption ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 337143 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania
    Description: Published
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Etna ; Monitoraggio ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanic gas emissions from fumaroles on the rim of La Fossa crater, Vulcano Island, Italy, were measured simultaneously using direct sampling (for H2O, CO2, total sulfur, HCl and HF), filter packs (for SO2, HCl, HF) and short-path active-mode FTIR measurements (for H2O, CO2,SO2, HCl and HF) in an intercomparison study in May 2002. The results show that Cl/F ratios were in good agreement between all three methods, and that FTIR and direct sampling determined comparable proportions of CO2 and H2O. Amounts of total S observed in direct sampling data were approximately double the amounts of SO2 measured with filter packs and FTIR. This difference could be attributed either to the fact FTIR and filter packs do not measure reduced sulfur species (e.g., H2S) or to sublimation of elemental S upon exit from the fumarole, after collection by direct sampling but before detection with FTIR and filter packs.
    Description: Published
    Description: L02610
    Description: partially_open
    Keywords: volcanic gas techniques ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 434088 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Effusive activity at Stromboli is uncommon, and the 2002–2003 flank eruption gave us the opportunity to observe and analyze a number of complex volcanic processes. In particular, the use of a handheld thermal camera during the eruption allowed us to monitor the volcano even in difficult weather and operating conditions. Regular helicopter-borne surveys with the thermal camera throughout the eruption have significantly improved (1) mapping of active lava flows; (2) detection of new cracks, landslide scars, and obstructions forming within and on the flanks of active craters; (3) observation of active lava flow field features, such as location of new vents, tube systems, tumuli, and hornitos; (4) identification of active vent migration along the Sciara del Fuoco; (5) monitoring of crater's inner morphology and maximum temperature, revealing magma level changes within the feeding conduit; and (6) detection of lava flow field endogenous growth. Additionally, a new system developed by A. J. L. Harris and others has been applied to our thermal data, allowing daily calculation of effusion rate. These observations give us new insights on the mechanisms controlling the volcanic system.
    Description: Published
    Description: 1-23
    Description: partially_open
    Keywords: volcano monitoring ; thermal mapping ; flank eruption ; Stromboli volcano ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 1426995 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The 200203 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 200203 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.
    Description: Published
    Description: 314-330
    Description: partially_open
    Keywords: Multi-disciplinary study ; Mount Etna ; 2002–03 eruption ; Eccentric eruptions ; Flank activity ; Etna feeding system ; Volcanic processes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 846913 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Continuous soil radon monitoring was carried out near the Southeast Crater (SEC) of Mt. Etna during the 10-day July 2006 Strombolian-effusive eruption. This signal was compared with simultaneously acquired volcanic tremor and thermal radiance data. The onset of explosive activity and a lava fountaining episode were preceded by some hours with increases in radon soil emission by 4–5 orders of magnitude, which we interpret as precursors. Minor changes in eruptive behavior did not produce significant variations in the monitored parameters. The remarkably high radon concentrations we observed are unprecedented in the literature. We interpret peaks in radon activity as due primarily to microfracturing of uranium-bearing rock. These observations suggest that radon measurements in the summit area of Etna are strongly controlled by the state of stress within the volcano and demonstrate the usefulness of radon data acquisition before and during eruptions.
    Description: Published
    Description: L24316
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 251334 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The Total Volatile (TV) flux from Mount Etna volcano has been characterised for the first time, by summing the simultaneously-evaluated fluxes of the three main volcanogenic volatiles: H2O, CO2 and SO2.SO2 flux was determined by routine DOAS traverse measurements, while H2O and CO2 were evaluated by scaling MultiGAS-sensed H2O/SO2 and CO2/SO2 plume ratios to the UV-sensed SO2 flux. The time-averaged TV flux from Etna is evaluated at ~21,000 t∙day-1, with a large fraction accounted for by H2O(~13,000 t∙day-1). H2O dominates (≥70%) the volatile budget during syn-eruptive degassing, while CO2 and H2O contribute equally to the TV flux during passive degassing. The CO2 flux was observed to be particularly high prior to the 2006 eruption, suggesting that this parameter is a good candidate for eruption prediction at basaltic volcanoes.
    Description: Published
    Description: L24302
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Active volcanoes ; Volcanic monitoring ; Gas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...