ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes  (4)
  • Dziewonski
  • TF III
  • 1
    facet.materialart.
    Unknown
    In:  Phys. Earth Plan. Int., Stockholm, Wissenschaftliche Buchgesellschaft, vol. 130, no. 1-2, pp. 71-101, pp. L15318, (ISSN: 1340-4202)
    Publication Date: 2002
    Keywords: Earthquake catalog ; Moment tensor ; Fault plane solution, focal mechanism ; PEPI ; Ekstroem ; Ekstrom ; Dziewonski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We document quantitatively observations of quasi-Love waves obtained at permanent (Italian National Seismic Network) and temporary seismic stations deployed in Italy between 2003 and 2006 (Retreat, CAT/SCAN projects). We analyzed large earthquakes with source parameters that favor quasi-Love wave generation within this time-span, including the Sumatra–Andaman earthquake of 12/26/04. The presence or the absence of the quasi-Love phase is compared to the smoothed anisotropic pattern defined by the numerous SKS splitting measurements obtained in peninsular Italy, and to the Italian upper mantle structure as defined by seismic tomography. The large-scale anisotropic features, responsible for shear-wave splitting and documented also by Pn and surface-wave anisotropy, generally display the correct geometry to explain the scattered quasi-Love waves. Quasi-Love observations do not demand a tilted-axis anisotropic geometry. We argue instead for anisotropy with laterally-variable horizontal symmetry axis in the upper mantle below the Italian peninsula.
    Description: Published
    Description: 26-38
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic anisotropy ; Quasi-Love ; Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Competing geodynamic scenarios proposed for northern Apennines (Italy) make very different predictions for the orientation of strain in the upper mantle. Constraints on the pattern are offered by observations of seismic anisotropy. Previous study of the anisotropy beneath the northern Apennines used birefringence of core-refracted shear waves (SKS phases), and demonstrated the presence of two domains: Tuscan and Adria. In the transition between the two domains, across the Apennines orogen, anisotropy measurements reflect a complex deep structure. To define better the upper-mantle structure beneath this area we analyze seismological data recorded by a set of seismic stations that operated for 3 years, between 2003 and 2006, located in the outer part of the Apennines belt, in the Adria terrane, collected by the RETREAT Project. Directionally distributed sets of SKS records were inverted for layered anisotropic structures with a well-tested method, adding new results to previous hypotheses for this area. New data analysis argues for two-layer anisotropy for sites located on the Apennines wedge and also one site in the Tuscan terrane. Beneath the wedge an upper layer with nearly north-south fast polarization pervades the lithospheric mantle, while at depth a nearly NW–SE Apennines-parallel direction is present in the lower layer. Beneath Tuscany a shallower NW–SE direction and a deeper E–W one suggest the deeper strain from active slab retreat, with a mantle-wedge circulation (i.e. an east–west corner flow), overlain by an Apennines-parallel fast polarization that could be a remnant of lower-crust deformation.
    Description: Published
    Description: 39-51
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Subduction zones ; Seismic anisotropy ; Northern Apennines ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Adria is a small region surrounded by three mountain belts: the Alps, the Apennines, and the Dinarides, built up by long evolution of subduction and collisional systems. We present 253 shear wave splitting measurements obtained by studying more than 100 teleseismic events for 12 stations. SKS splitting measurements show 3-D complexity and quite strong upper mantle deformation. We carefully analyzed results in terms of back azimuthal coverage and interpret measurements as related to Adria rotation and to subductions evolution. In the northern part of Adria, the anisotropy pattern follows the arcuate shape of the Alps; the same pattern, parallel to the mountains, occurs along the Apennines, but fast directions show a sudden change in the Adria foreland. This lateral variation has been analyzed to isolate a distinct Adria mantle anisotropic pattern, which is identified as NE-SW fast direction along the western microplate boundary and as N-S fast direction at Trieste. This pattern might be induced by drag effect of the counterclockwise rotation of Adria lithosphere that behaves as an independent microplate as identified by GPS data. Our measurements suggest that the geodynamic process that generated the Alps is more efficient deforming a larger volume of mantle than its Apennine counterpart. Moreover, the mantle circulation we hypothesize looking at the regional-scale patterns of anisotropy requires the existence of an escape route beneath the Alps-Apennines transition, through which the mantle flows and feed circulation in the Tyrrhenian mantle system as suggested by previous geodynamic models and as seen by some tomographic studies.
    Description: Published
    Description: 5814–5826
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic Anisotropy ; Adriatic region ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-19
    Description: We performed three-dimensional analysis of anisotropic parameters of body waves to develop a 3D self-consistent dynamic model of the syn-convergent extension in the Northern Apennines within the multidisciplinary project RETREAT. Simultaneous extension within the convergent margin can be the consequence of the retreat of the subducting Adriatic plate from the orogenic front, caused by sub-lithosphere mantle processes that seismic anisotropy can help to decipher. We use data recorded by the RETREAT temporary array consisting of 35 stations complemented by data of permanent INGV observatories. Currently, 18-months of data are available from some stations, representing half of the passive experiment duration. We detect many examples of core-refracted shear-wave splitting within the upper mantle, and observe both distinct lateral variations of anisotropic parameters and their dependence on the direction of propagation. In particular, the fast shear-wave polarization changes from slab-perpendicular to slab-parallel along the Apennines chain. There is also a distinct change in the anisotropic signals across the presumed boundary of the Tyrrhenian and Adriatic micro-plates. Variations of the splitting time delays and orientation of the fast shear waves, together with considerations on the geodynamics of the area, seem to exclude simple sub-lithosphere mantle corner flow as the only source of the observed anisotropy. Alternate models include (1) a frozen-in fabric of different lithosphere domains, and (2) complex mantle flow associated with the Plio-Pleisocene uplift and extension of Tuscany.
    Description: Published
    Description: Vienna
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: anisotropy ; SKS shear wave splitting ; Northern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...