ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-21
    Description: Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of the ground motion at the site, conditioned to the seismic network measures, may be performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and used for real-time risk management purposes. However, such prediction is performed in very uncertain conditions which have to be taken into proper account to limit false and missed alarms. In the present study, real-time risk analysis for early warning purposes is discussed. The magnitude estimation is performed via the Bayesian approach, while the earthquake localization is based on the Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold.
    Description: Published
    Description: 867–885
    Description: open
    Keywords: Early warning ; Hazard ; Real-time ; Risk ; False alarm ; Missed alarm ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3232509 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-21
    Description: Probabilistic seismic hazard analysis is currently the soundest basis for the rational evaluation of ground-motion hazard for site-specific engineering design and assessment purposes. An increasing number of building codes worldwide acknowledge the uniform hazard spectra as the reference to determine design actions on structures and to select input ground motions for seismic structural analysis. This is the case, for example, in Italy where the new seismic code also requires the seismic input for nonlinear dynamic analysis to be selected on the basis of dominating events, for example, identified via disaggregation of seismic hazard. In the present study, the design earthquakes expressed in terms of representative magnitude (M), distance (R), and ε were investigated for a wide region in the southern Apennines, Italy. To this aim, the hazards corresponding to peak ground acceleration and spectral acceleration at 1 sec with a return period of 475 yr were disaggregated. For each of the disaggregation variables the shape of the joint and marginal probability density functions were studied. The first two modes expressed by M, R, and ε were extracted and mapped for the study area. The results shown provide additional information, in terms of source and ground-motion parameters, to be used along with the standard hazard maps to better select the design earthquakes. The analyses also allow us to assess how various frequency ranges of the design spectrum are differently contributed by seismic sources in the study area.
    Description: Published
    Description: 2979–2991
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: seismic hazard ; disaggregation ; Southern Apenniens ; design earthquake ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-21
    Description: Earthquake early warning systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in re- ducing vulnerability and/or exposure of buildings and lifelines. Indeed, seismologists have recently developed efficient methods for real-time es- timation of an event’s magnitude and location based on limited informa- tion of the P-waves. Therefore, when an event occurs, estimates of magni- tude and source-to-site distance are available, and the prediction of the structural demand at the site may be performed by Probabilistic Seismic Hazard Analysis (PSHA) and then by Probabilistic Seismic Demand Analysis (PSDA) depending upon EEWS measures. Such an approach contains a higher level of information with respect to traditional seismic risk analysis and may be used for real-time risk management. However, this kind of prediction is performed in very uncertain conditions which may affect the effectiveness of the system and therefore have to be taken into due account. In the present study the performance of the EWWS under development in the Campania region (southern Italy) is assessed by simu- lation. The earthquake localization is formulated in a Voronoi cells ap- proach, while a Bayesian method is used for magnitude estimation. Simu- lation has an empirical basis but requires no recorded signals. Our results, in terms of hazard analysis and false/missed alarm probabilities, lead us to conclude that the PSHA depending upon the EEWS significantly improves seismic risk prediction at the site and is close to what could be produced if magnitude and distance were deterministically known.
    Description: Published
    Description: 211-232
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Earthquake Early ; Campania Region ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-21
    Description: The development and implementation of an earthquake early warning system (EEWS), both in regional or on-site configurations can help to mitigate the losses due to the occurrence of moderate-to-large earthquakes in densely populated and/or industrialized areas. The capability of an EEWS to provide real-time estimates of source parameters (location and magnitude) can be used to take some countermeasures during the earthquake occurrence and before the arriving of the most destructive waves at the site of interest. However, some critical issues are peculiar of EEWS and need further investigation: (1) the uncertainties on earthquake magnitude and location estimates based on the measurements of some observed quantities in the very early portion of the recorded signals; (2) the selection of the most appropriate parameter to be used to predict the ground motion amplitude both in near-and far-source ranges; (3) the use of the estimates provided by the EEWS for structural engineering and risk mitigation applications. In the present study, the issues above are discussed using the Campania–Lucania region (Southern Apennines) in Italy, as test-site area. In this region a prototype system for earthquake early warning, and more generally for seismic alert management, is under development. The system is based on a dense, wide dynamic accelerometric network deployed in the area where the moderate-to-large earthquake causative fault systems are located. The uncertainty analysis is performed through a real-time probabilistic seismic hazard analysis by using two different approaches. The first is the Bayesian approach that implicitly integrate both the time evolving estimate of earthquake parameters, the probability density functions and the variability of ground motion propagation providing the most complete information. The second is a classical point estimate approach which does not account for the probability density function of the magnitude and only uses the average of the estimates performed at each seismic station. Both the approaches are applied to two main towns located in the area of interest, Napoli and Avellino, for which a missed and false alarm analysis is presented by means of a scenario earthquake: an M 7.0 seismic event located at the centre of the seismic network. Concerning the ground motion prediction, attention is focused on the response spectra as the most appropriate function to characterize the ground motion for earthquake engineering applications of EEWS.
    Description: Published
    Description: On line First
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake early-warning ; Real-time seismology ; Bayesian analysis ; Missed and false alarm ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-21
    Description: Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of the ground motion at the site, conditioned to the seismic network measures, may be performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and used for real-time risk management purposes. However, such prediction is performed in very uncertain conditions which have to be taken into proper account to limit false and missed alarms. In the present study, real-time risk analysis for early warning purposes is discussed. The magnitude estimation is performed via the Bayesian approach, while the earthquake localization is based on the Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold.
    Description: Published
    Description: Geneva, Switzerland.
    Description: open
    Keywords: Early warning ; Real-time analysis ; Bayesian approach ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Format: 490011 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of the ground motion at the site, conditioned to the seismic network measures, may be performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and used for real-time risk management purposes. However, such prediction is performed in very uncertain conditions which have to be taken into proper account to limit false and missed alarms. In the present study, real-time risk analysis for early warning purposes is discussed. The magnitude estimation is performed via the Bayesian approach, while the earthquake localization is based on the Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold.
    Description: Published
    Description: open
    Keywords: early warning ; real-time ; risk ; hazard ; false alarm ; missed alarm ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 624811 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: For early-warning applications in particular, the reliability and efficiency of rapid scenario generation strongly depend on the availability of reliable strong ground-motion prediction tools. If shake maps are used to represent patterns of potential damage as a consequence of large earthquakes, attenuation relations are used as a tool for predicting peak ground-motion parameters and intensities. One of the limitations in the use of attenuation relations is that these have only rarely been retrieved from data collected in the same tectonic environment in which the prediction has to be performed. As a consequence, strong ground motion can result in underestimations or overestimations with respect to the recorded data. This also holds for Italy, and in particular for the Southern Apennines, due to limitations in the available databases, both in terms of distances and magnitude. Moreover, for “real-time” early-warning applications, it is important to have attenuation models for which the parameters can be easily upgraded when new data are collected, whether this has to be done during the earthquake rupture occurrence or in the post-event, when all the strong motion waveforms are available. Here we present a strong-motion attenuation relation for early-warning applications in the Campania region (Southern Apennines), Italy. The model has a classical analytical formulation, and its coefficients were retrieved from a synthetic strong-motion database created by using a stochastic approach. The input parameters for the simulation technique were obtained through the spectral analysis of waveforms of earthquakes recorded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) network for a magnitude range Md (1.5,5.0) in the last fifteen years, and they have been extrapolated to cover a larger range. To validate the inferred relation, comparisons with two existing attenuation relations are presented. The results show that the calibration of the attenuation parameters, i.e., geometric spreading, quality factor Q, static stress drop values along with their uncertainties, are the main concern.
    Description: Published
    Description: 133-152
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: A Strong Motion ; Earlywarning ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In the framework of an ongoing project financed by the Campania Region, a prototype system for seismic early and post-event warning is being developed and tested, based on a dense, wide dynamic seismic network (ISNet) and under installation in the Apennine belt region. This paper reports the characteristics of the seismic network, focussing on the required technological innovation of the different seismic network components (data-logger, sensors and data communication). To ensure a highly dynamic recording range, each station is equipped with two types of sensors: a strong-motion accelerometer and a velocimeter. Data acquisition at the seismic stations is performed using Osiris-6 model data-loggers made by Agecodagis. Each station is supplied with two (120 W) solar panels and two 130 Ah gel cell batteries, ensuring 72-h autonomy for the seismic and radio communication equipment. The site is also equipped with a GSM/GPRS programmable control/alarm system connected to several environmental sensors (door forcing, solar panel controller, battery, fire, etc) and through which the site status is known in real time. The data are stored locally on the hard-disk and, at the same time, continuously transmitted by the SeedLink protocol to local acquisition/analysis nodes (Local Control Center) via Wireless LAN bridge. At each LCC site runs a linux Earthworm system which stores and manages the acquired data stream. The real-time analysis system will perform event detection and localization based on triggers coming from data-loggers and parametric information coming from the other LCCs. Once an event is detected, the system will performs automatic magnitude and focal mechanism estimations. In the immediate post-event period, the RISSC performs shaking map calculations using parameters from the LCCs and/or data from the event database. The recorded earthquake data are stored into an event database, to be available for distribution and visualization for further off-line analyses. The seismic network will be completed in two stages: • Deployment of 30 seismic stations along the southern Apennine chain (to date almost completed) • Setting up a carrier-class radio communication system for fast and reliable data transmission, and installation of 10 additional seismic stations.
    Description: Published
    Description: 325 - 341
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Monitoring Infrastructure ; Early-warning Applications ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The last strong earthquake that occurred in the southern Apennines, the Irpinia earthquake on 23 November 1980 (M 6.9), was characterized by a complex rupture mechanism that ruptured three different faults (Bernard and Zollo 1989). This earthquake was well studied, and the quantity of data available has allowed a very detailed definition of the geometry and mechanisms of faults activated during this seismic event (Westaway and Jackson 1987; Pantosti and Valensise 1990). Even more than 20 years after the main event, the seismotectonic environment that contains the fault system on which the 1980 earthquake occurred shows continued background seismic activity including moderate-sized events such as the 1996 (M 5.1), 1991 (M 5.1) and 1990 (M 5.4) events. Moreover, the locations of the microearthquakes (taken from the database of the Istituto Nazionale di Geofisica e Vulcanologia, INGV) define an epicentral area with a geometry and extent surprisingly similar to that of the 1980 earthquake and its aftershocks (figure 1A). These simple observations suggest that it may be possible to study the preparation cycles of strong earthquakes on active faults by studying the microseismicity between seismic events. With this in mind, a seismic network of large dynamic range was planned and is now in an advanced phase of completion in the southern Apennines. Called ISNet (Irpinia Seismic Network), it is equipped with sensors that can record high-quality seismic signals from both small-magnitude and strong earthquakes, from which it will be possible to retrieve information about the rupture process and try to understand the scaling relationships between small and large events. Due to its high density, wide dynamic range, and advanced data-acquisition and data-transmission technologies, the network is being upgraded to become the core infrastructure of a prototype system for seismic early warning and rapid post-event ground-shaking evaluation in the Campania region, which has seismic hazard that ranks among the highest in Italy (Cinti et al. 2004). ISNet will be devoted to real-time estimation of earthquake location and magnitude and to measuring peak ground-motion parameters so as to provide rapid ground-shaking maps for the whole of the Campania region. The information provided by ISNet during the first seconds of a potentially damaging seismic event can be used to activate several types of security measures, such as the shutdown of critical systems and lifelines (Iervolino et al. 2006). The implementation of a modern seismic network involves many different research and technological aspects related to the development of sophisticated data management and processing. The communication systems need to rapidly generate useful, robust, and secure alert notifications. Here we provide a general technical and seismological overview of ISNet's complex architecture and implementation.
    Description: Published
    Description: 622-634
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic Network ; seismic early-warning ; seismic instrumentation ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We investigate the effect of extended faulting processes and heterogeneous wave propagation on the early warning system capability to predict the peak ground velocity (PGV) from moderate to large earthquakes occurring in the southern Apennines (Italy). Simulated time histories at the early warning network have been used to retrieve early estimates of source parameters and to predict the PGV, following an evolutionary, probabilistic approach. The system performance is measured through the Effective Lead-Time (ELT), i.e., the time interval between the arrival of the first S-wave and the time at which the probability to observe the true PGV value within one standard deviation becomes stationary, and the Probability of Prediction Error (PPE), which provides a measure of PGV prediction error. The regional maps of ELT and PPE show a significant variability around the fault up to large distances, thus indicating that the system's capability to accurately predict the observed peak ground motion strongly depends on distance and azimuth from the fault.
    Description: Published
    Description: L00B07
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic early warning ; Southern Italy ; Synthetic seismograph ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...