ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (5)
  • Earthquake catalog
  • TF III
Collection
  • 1
    facet.materialart.
    Unknown
    In:  Phys. Earth Plan. Int., Stockholm, Wissenschaftliche Buchgesellschaft, vol. 130, no. 1-2, pp. 71-101, pp. L15318, (ISSN: 1340-4202)
    Publication Date: 2002
    Keywords: Earthquake catalog ; Moment tensor ; Fault plane solution, focal mechanism ; PEPI ; Ekstroem ; Ekstrom ; Dziewonski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The seismic moment tensor is the complete mathematical representation of the movement on a fault 10 during an earthquake, comprising of the couples of forces that produced it, the description of the fault 11 geometry, and its size by means of the scalar seismic moment M0. 12 The computation of seismic moment tensor has become a widely diffused activity because of the 13 relevance of this kind of data in seismotectonic and geodynamic studies and, in more recent times, 14 because it allows obtaining rapid information about a seismic event immediately after its occurrence. This 15 progress has been possible with the advent of modern standardized instruments since the early 1960s, 16 above all of the very broadband seismographic stations that started to record in the late 1970s. Further- 17 more, time after time, the easier availability of digital data impressed a strong incentive to improve the 18 procedures of source parameter computation.
    Description: Unpublished
    Description: 1-15
    Description: 4IT. Banche dati
    Description: restricted
    Keywords: Regional centroid moment tensor ; Mediterranean ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Il progetto AlpArray (PI E. Kissling, Seismology and Geodynamics ETH) è un’iniziativa europea di collaborazione interdisciplinare sismologica e geodinamica, il cui obiettivo principale è quello di migliorare la comprensione della struttura profonda e della geodinamica delle Alpi (la catena montuosa più studiata al mondo) tramite l’acquisizione, l’analisi e l’interpretazione di dati sismologici di alta qualità. Per ottenere delle immagini di estremo dettaglio della crosta e del mantello, AlpArray propone la realizzazione di una rete sismica a maglia il più possibile omogenea (massima distanza inter- stazione 52 km, backbone network), tramite la condivisione dei dati delle reti permanenti esistenti e l’installazione, da parte di ciascun paese partecipante, di numerose stazioni sismiche temporanee a larga banda (BB). Il progetto prevede l'installazione di circa 250 stazioni sismiche in tutta Europa, in particolare in Italia, Francia, Svizzera, Germania, Austria, Croazia, Repubblica Ceca, Bosnia, Ungheria, Slovenia e Polonia. I dati confluiranno all’interno dell’archivio europeo denominato European Integrated Data Archive (EIDA). Considerata l’estensione geografica dell’area, i partecipanti combineranno le infrastrutture esistenti per l’acquisizione dei dati, il loro trattamento, l’applicazione delle tecniche più avanzate di imaging e l’interpretazione e modellazione dei risultati, in uno sforzo transnazionale ad una scala mai realizzata prima in Europa. Si tratta quindi di un’occasione fondamentale per lo scambio di competenze tecniche e scientifiche all’avanguardia. L’INGV, oltre a condividere i dati delle proprie stazioni permanenti nell’area di interesse, si occupa della installazione e della manutenzione sul territorio italiano di 20 nuove stazioni-BB temporanee i cui dati verranno trasmessi in tempo reale (partecipando così alla realizzazione del backbone) e coadiuva l’ETH nella ricerca dei siti italiani per altrettante stazioni svizzere e nella loro manutenzione ordinaria. L’acquisizione di una mole notevole di nuovi dati permetterà di raffinare le conoscenze sulla struttura e la composizione della litosfera e del mantello al di sotto dell’area alpina: Queste conoscenze sono anche utili ai fini della modellazione geodinamica. Il potenziamento del monitoraggio sismico aiuterà ad individuare e studiare in maggior dettaglio le aree sismogenetiche della regione alpina.
    Description: Published
    Description: Trieste
    Description: 1T. Geodinamica e interno della Terra
    Description: open
    Keywords: AlpArray ; seismic network ; Rete sismica ; Alpi ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: On 2009 April 6, the Central Apennines were hit by an Mw= 6.3 earthquake. The region had been shaken since 2008 October by seismic activity that culminated in two foreshocks with Mw 〉 4, 1 week and a few hours before the main shock. We computed seismic moment tensors for 26 events with Mw between 3.9 and 6.3, using the Regional Centroid Moment Tensor (RCMT) scheme. Most of these source parameters have been computed within 1 hr after the earthquake and rapidly revised successively. The focal mechanisms are all extensional, with a variable and sometimes significant strike-slip component. This geometry agrees with the NE–SW extensional deformation of the Apennines, known from previous seismic and geodetic observations. Events group into three clusters. Those located in the southern area have larger centroid depths and a wider distribution of T-axis directions. These differences suggest that towards south a different fault system was activated with respect to the SW-dipping normal faults beneath L’Aquila and more to the north.
    Description: Published
    Description: 238-242
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: seismic moment tensor ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The Montello anticline is a morphotectonic feature of the east pede-mountain of the South Alpine Chain in northern Italy, which lies ca. 40 km northwest of Venice, Italy. The purpose of this study is to characterize the present-day crustal deformation and seismotectonics of the Montello area through multi-parametric geophysical observations. We used new data obtained from the installation of a temporary network of 12 seismic stations and 6 GPS sites. The GPS observations indicate that there is ~1 mm/yr shortening across the Montello thrust. Sites located north of the Montello thrust front deviate from the ~NNW-ward Adria-Eurasia convergence direction, as they are constrained by a relative rotation pole in northwestern Italy that has a NNE-ward motion trend. Over 18 months, seismographic recordings allowed us to locate 142 local seismic events with Ml 0.5-3.5 with good reliability (rms 〈0.5). After cross-correlation analysis, we classified 42 of these events into six clusters, with cross-correlation thresholds 〉0.80. The source focal solutions indicate that: (i) there is thrusting seismic activity on the basal, sub-horizontal, portion of the Montello structure; and (ii) strike-slip source kinematics prevail on the western edge of the Montello hill. Our observations on the source mechanisms and the measured crustal deformation confirm that the Montello thrust is tectonically active.
    Description: Published
    Description: 95-108
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Northern Italy ; Eastern Southern Alps ; Tectonic deformation ; Satellite geodesy ; Earthquake source observation ; Continental neotectonics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: On the night between May 15 and 16, 1951, two moderate earthquakes with estimated magnitudes of M 5.4 and 4.5 occurred in northern Italy, about 40 km southeast of Milan, close to the small town of Caviaga. They were recorded by several observatories worldwide, as reported by the International Seismological Summary (ISS) Bulletin. Despite the moderate magnitudes, these two events caught the attention of seismologists and have been studied in detail, in particular by Caloi et al. (1956), because they were close to Caviaga, in an area that was assumed to be aseismic. Moreover, their shallow hypocenters (ca. 5 km in Caloi et al., 1956) indicated a possible anthropogenic source, related to wells for gas withdrawal. In the absence of any further discussion or revision of the original study by Caloi et al. (1956), the Caviaga earthquakes have been included in several compilations of induced seismicity, and they have been generally accepted as cases of anthropogenic events. After 60 years it is possible to revisit this interpretation using improved computational techniques, the available high-resolution data, enriched historical catalogs, and a deeper understanding of the regional seismotectonic and crustal structure. The focus of this study is the relocation of these two events with the use of modern hypocentral location methods, and the analysis of the historical seismicity of the area. A complete seismic source parameterization is out of the scope of this preliminary study. In the following we describe the regional geological setting and the gas reservoir characterization, introduce the context of historical seismicity, provide a description of the main shock relocation, discuss the uncertainties of the hypocentral parameters and estimate the variation of the stress field in proximity to wells. We consider this revision necessary to be able to discuss the possibility that these two events were not induced by human activity, as well as to improve the quality of the dataset for decision makers involved in risk evaluation.
    Description: Published
    Description: 1335-1344
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: JCR Journal
    Description: open
    Keywords: Induced Seismicity ; Seismic analysis ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...