ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (2)
  • 2010-2014  (2)
  • 1
    Publikationsdatum: 2012-12-19
    Beschreibung: On May, 20th 2012, the Ferrara and Modena provinces (Emilia Romagna, Northern Italy) were struck by a moderate magnitude earthquake (Ml 5.9). The focal mechanism is consistent with a ~E-W-striking thrust fault. The mainshock was recorded by 29 high-rate sampling (1-Hz) continuous GPS (HRGPS) stations belonging to scientific or commercial networks and by 55 strong motion (SM) stations belonging to INGV (Istituto Nazionale di Geofisica e Vulcanologia) and RAN (Rete Accelerometrica Nazionale) networks, respectively. The spatial distribution of both HRGPS and SM stations with respect to the mainshock location allows a satisfactory azimuthal coverage of the area. To investigate directivity effects during the mainshock occurrence, we analyze the spatial variation of the peak ground displacement (PGD) measured either for HRGPS or SM sites, using different methods. For each HRGPS and SM site, we rotated the horizontal time series to the azimuth direction and we estimated the GPS-related and the SM-related peak ground displacement (G-PGD and S-PGD, respectively) retrieved by transverse component. However, in contrast to GPS displacements, the double integration of the SM data can be affected by the presence of drifts and, thus, they have to be corrected by quasi-manual procedures. To more properly compare the G-PGDs to the S-PGDs, we used the response spectrum. A response spectrum is simply the response of a series of oscillators of varying natural frequency, that are forced into motion by the same input. The asymptotic value of the displacement response spectrum is the peak ground displacement. Thus, for each HRGPS and SM site, we computed the value of this asymptotic trend (G-PGDrs and S-PGDrs, respectively). This method allows simple automatic procedures. The consistency of the PGDs derived from HRGPS and SM is also evaluated for sites where the two instruments are collocated. The PGDs obtained by the two different methods and the two different data types suggest a source directivity effect in the SE (~120°-150°N) direction.
    Beschreibung: Published
    Beschreibung: San Francisco, California (USA)
    Beschreibung: 3.1. Fisica dei terremoti
    Beschreibung: open
    Schlagwort(e): HRGPS; strong motion ; source directivity ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-02-24
    Beschreibung: During the three strongest shocks of the 1997 Umbria-Marche, central Italy, seismic sequence, long-period (T 〉 1 s) spectral ordinates showed large variations in intermountain basins in the Apennines. In particular, at a strong-motion station in the Rieti plain, about 65 km south of epicenters, long-period response spectra during the Mw 5.6 and 5.7 shocks had larger amplitudes than the Mw 6.0 ones; in contrast, in the Gubbio basin, about 40 km northwest of the epicenters, the Mw 6.0 shock had spectral ordinates exceeding those of the Mw 5.6 and 5.7 shocks by more than a factor of 10 at long periods. Since focal mechanisms were similar for the causative earthquakes and the difference in magnitude and source-to-receiver-path is small, these observations can only be explained in terms of a different source directivity. The availability of a rock station on the Gubbio basin edge and other moderate-magnitude earthquakes of the same seismic sequence allows us to separate the local amplification term from the varying contribution of source directivity for the different shocks. Their combination is responsible for long-period ground displacements significantly larger than 10 cm at Mw 6.0 and 40-km source distance. Since source directivity is a very recurrent feature for normal-faulting earthquakes of the Apennines (evident during the recent L’Aquila earthquakes even at magnitudes as small as 3), these results arise a concern for many intermountain basins located in a geographical position favorable to a significant hazard increase due to source directivity. Furthermore, the performance of different Ground Motion Prediction Equations has been explored as well as of corrections based on various source directivity models.
    Beschreibung: Published
    Beschreibung: University of California Santa Barbara
    Beschreibung: 3.1. Fisica dei terremoti
    Beschreibung: open
    Schlagwort(e): Source directivity ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...