ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-27
    Description: The brittle-ductile transition (BDT) separates the lower crust where deformation occurs in steady-state regime, from the upper crust where it is rather dominated by stick-slip. The fault hangingwall above BDT accumulates elastic energy during the interseismic period, without significant evidence of surface strain rate Faults activate in areas of high strain rate gradients along the segments with lower strain rates Fluid discharge varies as a function of the tectonic setting The phenomenology gives insights for the parameters to be monitored in earthquake forecasting
    Description: Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC) within the INGV-DPC 2007-2009 agreement(project S1), Sapienza University and CNR-Eurocores-TopoEurope.
    Description: Unpublished
    Description: Brisbane Australia
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: brittle-ductile transition ; L' Aquila 2009 earthquake ; Emilia 2012 earthquake ; geodetic strain rate ; fault activation ; magnitude ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-08
    Description: A combined GPS velocity solution covering a wide area from Egypt to Middle East allowed us to infer the current rates across the main, already well known, tectonic features. We have estimated 126 velocities from time series of 90 permanent and 36 non permanent GPS sites located in Africa (Egypt), Eurasia and Arabia plates in the time span 1996–2015, the largest available for the Egyptian sites. We have combined our velocity solution in a least-squares sense with two other recent velocity solutions of networks located around the eastern Mediterranean, obtaining a final IGb08 velocity field of about 450 sites. Then, we have estimated the IGb08 Euler poles of Africa, Sinai and Arabia, analyzing the kinematics of the Sinai area, particular velocity profiles, and estimating the 2D strain rate field. We show that it is possible to reliably model the rigid motion of Sinai block only including some GPS sites located south of the Carmel Fault. The estimated relative motion with respect to Africa is of the order of 2–3 mm/yr, however there is a clear mismatch between the modeled and the observed velocities in the southern Sinai sites. We have also assessed the NNE left shear motion along the Dead Sea Transform Fault, estimating a relative motion between Arabia and Africa of about 6 mm/yr in the direction of the Red Sea opening.
    Description: Published
    Description: 231-238
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Africa; Arabia; Sinai; Gulf of Aqaba; Gulf of Suez; GPS; Combined velocity field; Euler poles ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Servicio de Publicaciones, Universidad Complutense de Madrid
    Publication Date: 2014-12-18
    Description: The recent development and establishment of GNSS networks in Italy make it possible to define an increasingly detailed spatial and temporal resolution of the ongoing crustal deformation and to visualize the complex interplay between different orogens in the Africa-Eurasia collision zone. We analyzed all the available GPS raw data in the time span 1998-2013 and constructed time series of GNSS stations referenced to a common reference frame and finally produced the tectonic velocity field providing an updated detailed picture of the kinematics (velocity map) and deformation pattern (strain rate map) of the Italian area.
    Description: Published
    Description: 11-24
    Description: 2T. Tettonica attiva
    Description: N/A or not JCR
    Description: restricted
    Keywords: GNSS networks ; Italian area ; velocity field ; deformation rate ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Panarea volcano (Aeolian Islands, Italy) was considered extinct until November 3, 2002 when a submarine gas eruption began in the area of the islets of Lisca Bianca, Bottaro, Lisca Nera, Dattilo and Panarelli, about 2.5 km east of Panarea Island. The gas eruption decreased to a state of low degassing by July 2003. Before 2002 the activity of Panarea volcano was characterized by mild degassing of hydrothermal fluid. The compositions of the 2002 gases and their isotopic signatures suggested that the emissions originated from a hydrothermal/geothermal reservoir fed by magmatic fluids. We investigate crustal deformation of Panarea volcano using the GPS velocity field obtained by the combination of continuous and episodic site observations of the Panarea GPS network in the time span 1995-2007. We present a combined model of Okada sources which explains the GPS results acquired in the area after December 2002. The kinematics of Panarea volcano show two distinct active crustal domains characterized by different styles of horizontal deformation, supported also by volcanological and structural evidences. A subsidence in the order of several mm/yr is affecting the entire Panarea volcano and a shortening of 10-6 yr-1 has been estimated in the Islets area. Our model reveals that the degassing intensity and distribution are strongly influenced by geophysical-geochemical changes within the hydrothermal/geothermal system. These variations may be triggered by changes in the regional stress field as suggested by the geophysical and volcanological events that occurred on 2002 in the Southern Tyrrhenian area.
    Description: In press
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: Panarea ; GPS ; Modelling ; gas eruption ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Colli Albani volcanic complex, located in central Italy about 15km SE of Rome, has been dominated by periodic eruptive histories started about 561 ka and ending with the most recent and voluminous activity of the Albano maar (〈70 ka) phase. Earthquakes of moderate intensity, gas emissions and significant ground deformations are the recent evidences of a residual activity. We decided to start a monitoring test by installing as first step three GPS permanent stations on the volcanic structure, in sites easily accessible. The analysis of about 2 years of GPS observations has evidenced a peculiar velocity pattern of the Colli Albani stations with respect to those located nearby, but outside the volcano edifice. With respect to Eurasia, the horizontal velocities are NE directed with magnitudes of 2.2±1.4mm/year (RDPI), 3.0±0.8mm/year (RMPO) and 3.3±1.2mm/year (NEMI). The uplift rates are determined with minor accuracy and range from 3.3 and 6.0mm/year. We used a non-linear inversion algorithm to determine the best-fit parameters for a Mogi spherical source based on the Levenberg–Marquardt least squares approach. The best-fit is obtained with a source at 4.6km depth beneath thewestern flank of the volcano and a volume variation of 3.6×10−4 km3/year. This result is in agreement with the volume rate retrieved by PS-InSAR technique and rather different from the rate inferred from leveling surveys. Consequently, non-linear trends of the hydrothermal system charge cannot be excluded apriori and the continuous GPS monitoring should be considered a priority in assessing the hazard of the Colli Albani.
    Description: This work has been partially supported by the Dept. of Civil Protection, Project DPC115 V3 Colli Albani.
    Description: Published
    Description: 79-87
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Colli Albani ; GPS ; Volcano monitoring ; Mogi source ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: A stable geodetic reference frame permits to relate one position to another and to compute a reliable deformation field from geodetic observations. In order to satisfy scientific requirements, the reference frame should be accurate, reliable and internally consistent over time with unambiguously specified datum definition (origin, scale, orientation and their respective time evolution). Current reference frame stability between successive frame realizations suggests that the agreement is at the level of 1 cm and 0.3 mm/yr respectively for absolute and time derivative translation and scale factors. They represent the current stability over time of the reference frame and set the sensitivity for geodetic measurements. Here we will present the results of a GPS deformation field in the Italian region obtained from all the available permanent GPS stations operated in Italy. The complex nature of the ongoing tectonic deformation along the Alpine-Apennines orogenic systems is now evident and GPS data have proven its capability to measure millimetre scale deformations.
    Description: Unpublished
    Description: Erice, Italy
    Description: 1.9. Rete GPS nazionale
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: GPS processing, reference systems, crustal deformation ; ITRF ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Since 1999 we have repeatedly surveyed the Central Apennines by means of a dense survey style geodetic network (CAGeoNet) consisting in 123 benchmarks distributed in an area of ~180 x 130 km extended from the Tyrrhenian Sea to the Adriatic Sea with an average inter-site distance of 3-5 km. The network is located across the main seismogenic structures of the region, able to generate destructive earthquakes. Here we show the horizontal GPS velocity field of the CaGeoNet and the available continuous GPS (CGPS) stations in this region, that are estimated from their position time series in the time span 1999-2007. Data have been analyzed using Bernese and Gamit software and the two solutions have been rigorously combined to minimize software-dependent systematic errors. We analyze the strain rate field, which shows a region characterized by extension located along the axis of the Apennines chain, with values ranging from 2 to 66 10-9 yr-1 and a relative minimum of 20 10-9 yr-1 located in the L’Aquila basin area. Our velocity field represents an improved estimation of the ongoing elastic inter-seismic deformation of central Apennines in particular of the L’Aquila earthquake of April 6th, 2009 area.
    Description: Published
    Description: 1039-1049
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Central Apennines, GPS velocity field, solutions combination, GPS surveys ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Geodetic measurements devoted to active tectonics studies are extensively carried out in Italy only since the early 2000s, the maximum effort in deploying the GPS networks in Italy dating back to about 2005, so that the observed deformations represent the instantaneous seismic cycle conditions in every area of the Italian region. If we assume a simple idealized seismic cycle model for earthquake recurrence, we can draw some tracks potentially useful in seismic hazard studies, concerning both the spatial mapping of hazardous areas and the time trend of active fault relaxation. We show how the background strain-rate (SR) estimated from GPS velocities in Italy and the comparison with seismicity have evidenced that larger earthquakes occur with higher probability in areas of lower SR, providing evidence that elastic energy accumulates in areas where faults are locked and SR is lower. In tectonically active areas, such as the Apennine subduction belt, SR lows and the knowledge of active faults can be used to identify areas more prone to release larger amount of energy with respect to adjacent zones characterized by higher SR. We have found and modeled an exponential decrease relationship between SR and the time elapsed since the last largest earthquake for normal and thrust faults in the Italian area and estimated the characteristic times of relaxation by a non-linear inversion showing that thrust events exhibit a characteristic time (~ 990 yr) about 3 times larger, and lower SR, than those with normal fault mechanism. Assuming standard rigidity and viscosity values we are able to infer an average recurrence time of about 600 yr for normal faults and about 2000 yr for thrust faults.
    Description: Unpublished
    Description: Trieste
    Description: open
    Keywords: seismic cycle ; earthquake occurrence ; geodetic strain rate ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-14
    Description: The GPS results are of utmost relevance for the study of the complex plate boundary geodynamics. The lithosphere strain partitioning is part of the seismic cycle. We present the first GPS kinematic pattern obtained during the interseismic phase by a dense episodic GPS network, the Southern Apennine Geodetic Network - SAGNet (Sepe et al., 2009), in the time span 2002-2013. This network is located across the transition zone between central and southern Apennine, including Meta-Mainarde-Venafro and AltoMolise-Sannio-Matese mounts. This region is characterized by seismogenic fault systems responsible, in the past, for several destructive earthquakes of intensity I ≥ IX MCS and, in more recent years, characterised mainly by some moderate magnitude seismic sequences (max magnitude Mw 5.0, December 29 2013) and single small events (Ml 〈 2.5).SAGNet GPS data were processed by BERNESE sw v.5.0 and the resulting velocities were least-squares combined with the permanent stations velocity field and with the velocity solution of Giuliani et al. 2009. The combined GPS velocity field, shows a perpendicular maximum extension with respect to the Apennine chain of about 2.0 mm/y.The Matese area was hit on December 29, 2013 by a Mw=5.0 (Convertito et al., 2016) earthquake. It was followed by an intense seismic activity until the beginning of February 2014. After the mainshock a GPS survey was carried out on the SAGnet stations. We collected data from 2013, 30 December to 2014, 4 April. The time series of 17 stations are affect by an offsets on the linear drift. The map of horizontal coseismic displacements (Figure 3) shows a sub-radial displacement shape with respect to the epicentre. Larger displacements are observed in correspondence of NE portion of the Matese massif. Considering the Matese Lake Fault as the probable source of the mainshock (dip 65°, strike 116, rake 270 – MLF, Ferranti et al, 2015), we found that the Okada modelling does not fit the observed displacements and only a small fraction of displacements are resolved with a simple slip.Figure 4 resembles the results of previous studies compared with our GPS analysis. We considered seismological analyses, tomographic models, degassing of CO2 data and conceptual model of processes recognized in South Apennine (L. Bisio, et al., 2004; Chiarabba and Chiodini, 2013; Improta et al., 2014; Ventura et al., 2007, R. Di Stefano and M.G. Ciaccio, 2014; Ferranti et al., 2015; Convertito et al., 2016;). The GPS results indicate that the relative motion between Eurasia and Adria plates is responsible of the active deformation in the Apennines. The most important outcomes of this study are: (i) During the interseismic phase the differential motion between Adriatic and Tyrrhenian domains seems to be accommodated in a narrow belt bordering the westward flank of the Sannio Mts, showing a 2 mm/y extension. (ii) The maximum extension does not follow the topographic high of the chain but is shifted toward the eastern outer belt. (iii) No significant GPS deformation is highlighted in correspondence of major and known fault systems where the GPS velocities appear almost steady. We propose that the observed coseismic displacements are only marginally explained by a slip on the MLF fault. The vertical directivity and depth distribution of the seismic sequence (Convertito et al., 2016), the vertical and horizontal heterogeneity of lower crust and upper mantle (Bisio et al., 2004; Di Stefano and Ciaccio, 2014), the high flux of CO2 degassing (Ventura et al., 2007, Chiarabba e Chiodini, 2013 ), the probable presence of pressurized CO2 bodies fed by fluids uprising from the mantle wedge (Improta et al.,2014 ), suggest instead that the seismic sequence could be caused by sub-vertical cracks that originate at the Moho interface and reach the bottom of the seismogenic layer (10km depth).
    Description: DPC
    Description: Unpublished
    Description: San Francisco (USA)
    Description: 2T. Tettonica attiva
    Description: open
    Keywords: GPS, Deformation, Active extension ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-24
    Description: We present the INGV (Italian National Institute of Geophysics and Volcanology) geodetic research infrastructure and related facilities, dedicated to the observation and monitoring of current deformation of the plate boundary between Africa and Eurasia. The recent increase of continuous GPS (CGPS) stations in the Central Mediterranean plate boundary zone offers the opportunity to study in detail the present-day kinematics of this actively deforming region. For answering all the open questions related to this complex area, INGV deployed a permanent, integrated and real-time monitoring CGPS network (RING) all over Italy. The RING network (http:/ring.gm.ingv.it) is now constituted by more than 150 stations. All stations have high quality GPS monuments and most of them are co-located with broadband or very broadband seismometers and strong motion sensors. The RING CGPS sites acquire at 1Hz and 30s sampling rates (some of them acquire at 10 Hz) and are connected in real-time to the INGV acquisition centers located in Roma and Grottaminarda. Real-time GPS data are transmitted using different systems, such as satellite systems, Internet, GPRS/UMTS and wireless networks. The differentiation of data transmission type and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. Furthermore, the INGV data acquisition centers acquire, archive and analyze most of the Italian CGPS stations managed by regional or national data providers (such as local Authorities and nation-wide industries), integrating more than 350 stations of the CGPS scientific and commercial networks existing in the Italian region. To manage data acquisition, storage, distribution and access we developed dedicated facilities including new softwares for data acquisition and a web-based collaborative environment for management of data and metadata. The GPS analysis is carried out with the three main geodetic-quality softwares used in the GPS scientific community: Bernese GAMIT an GIPSY-OASIS. The resulting daily solutions are aligned to the ITRF2005 reference frame. Stable plate reference frames are realized by minimizing the horizontal velocities at sites on the Eurasia and Nubia plates, respectively. The different software-related solutions consistency RMS is within 0.3 mm/yr (Avallone et al., 2010). The solutions are then evaluated with regard to the numerous scientific motivations behind this presentation, ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults. The RING network is strongly contributing to the definition of GPS velocity field in the Italian region, and now is able to furnish a newly and up to date view of this actively deforming part of the Nubia-Eurasia plate boundary. INGV is now aiming to make the RING (and integrated CGPS networks) data and related products publicly available for the scientific community. We believe that our network represents an important reality in the framework of the EPOS infrastructure and we strongly support the idea of an European research approach to data sharing among the scientific community. We will present (a) the current CGPS site distribution, (b) the technological description of the data acquisition, storage and distribution at INGV centers, (c) the results of CGPS data analysis, and (d) the planned data access for the scientific community.
    Description: Published
    Description: Vienna, Geophysical Research Abstracts Vol. 13, EGU2011-8626, 2011
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: GPS network ; Italy ; active deformation ; infrastructure ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...