ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-19
    Description: Biomass is a spaceborn polarimetric P-band (435 MHz) synthetic aperture radar (SAR) in a dawn–dusk low Earth orbit. Its principal objective is to measure biomass content and change in all the Earth’s forests. The ionosphere introduces the Faraday rotation on every pulse emitted by low-frequency SAR and scintillations when the pulse traverses a region of plasma irregularities, consequently impacting the quality of the imaging. Some of these effects are due to total electron content (TEC) and its gradients along the propagation path. Therefore, an accurate assessment of the ionospheric morphology and dynamics is necessary to properly understand the impact on image quality, especially in the equatorial and tropical regions. To this scope, we have conducted an in-depth investigation of the significant noise budget introduced by the two crests of the equatorial ionospheric anomaly (EIA) over Brazil and Southeast Asia. This paper is characterized by a novel approach to conceive a SAR-oriented ionospheric assessment, aimed at detecting and identifying spatial and temporal TEC gradients, including scintillation effects and traveling ionospheric disturbances, by means of Global Navigation Satellite Systems ground-based monitoring stations. The novelty of this approach resides in the customization of the information about the impact of the ionosphere on SAR imaging as derived by local dense networks of ground instruments operating during the passes of Biomass spacecraft. The results identify the EIA crests as the regions hosting the bulk of irregularities potentially causing degradation on SAR imaging. Interesting insights about the local characteristics of low-latitudes ionosphere are also highlighted.
    Description: Published
    Description: 6412-6424
    Description: 2A. Fisica dell'alta atmosfera
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: In this chapter, some scintillation models are described, taking into account of the dynamical nature of the Earth's ionosphere and its “complexity.” After a short description of the problem, a detailed explanation is provided about the propagation model named WAM, after its authors Wernik, Alfonsi, and Materassi. WAM is a propagation model based on a phase screen approach, where the statistical characteristics of the screen are constructed according to in situ data of ionospheric irregularities. Then, the Ground-Based Scintillation Climatology (GBSC) model is presented; this is a tool based on a wide statistical database from high performance receivers.
    Description: Published
    Description: 277-299
    Description: 2A. Fisica dell'alta atmosfera
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-16
    Description: This paper presents ionospheric scintillation data recorded at SANAE in Antarctica during a moderate geomagnetic storm on 20-21 January 2016 which gives evidence of the advantages of the new generation of instrumentation for monitoring ionospheric scintillation. The data was collected as part of the DemoGRAPE project aimed at the demonstration of cutting edge technology for the empirical assessment of the ionospheric delay and ionospheric scintillations in the polar regions which affect the accuracy of satellite navigation.
    Description: Published
    Description: Montreal
    Description: 2A. Fisica dell'alta atmosfera
    Keywords: scintillations, GNSS ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: In this work, we preliminary analyse ionospheric electron density as observed by the first China Seismo-Electromagnetic Satellite (CSES-01) from April 2018 to July 2019, defining an anomaly along each track objectively. We then apply a worldwide statistical correlation in space and time of these anomalies with respect to M5.5+ shallow earthquakes (USGS source) occurred in the same period. Although the data are short and cover discontinuously the period of concern, in general, the preliminary results seem to confirm those obtained with an analogous analysis on the Swarm satellite data recently published in De Santis A. et al., Sci. Rep., 9, (2019) 20287.
    Description: This work has been performed in the framework of four different projects: LIMADOUScienza, funded by the Italian Space Agency, Further, funded by INGV, Working Earth (Pianeta Dinamico CUP: D53J19000170001), funded by the Italian MUR ministry and Dragon 5 cooperation 2020–2024 project (ID.59236).
    Description: Published
    Description: 119
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: CSES ; earthquake ; electron density ; ionosphere ; precursors ; 01.02. Ionosphere ; 04.05. Geomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-12-28
    Description: The Swarm satellite mission has been used for numerous studies of the ionosphere. Here we use a global product, based on electron density measurements from Swarm that characterises ionospheric variability. The IPIR (Ionospheric Plasma IRregularities product) provides characteristics of plasma irregularities in terms of their amplitudes, gradients and spatial scales and assigns them to geomagnetic regions. Ionospheric irregularities and fluctuations are often the cause of errors in position, navigation, and timing (PNT) based on the Global Navigation Satellite Systems (GNSS), in which signals pass through the ionosphere. The IPIR dataset also provides an indication, in the form of a numerical value index (IPIR index), of the severity of irregularities affecting the integrity of trans-ionospheric radio signals and hence, the accuracy of GNSS positioning. We analysed datasets from Swarm A and ground-based scintillation receivers. Time intervals (when Swarm A passes over the field of view of the ground-based GPS receiver) are compared to ground-based scintillation data, collecting an azimuthal selection of the GNSS data relevant to the Swarm satellite overpass. We provide validations of the IPIR product against the ground-based measurements from 23 ground-based receivers, focusing on GPS TEC and scintillation data in low-latitude, auroral and polar regions, and in different longitudinal sectors. We have determined the median, mean, maximum and standard deviation of the parameter values for both datasets and each conjunction point. We found a weak correlation of the intensity of both phase and amplitude scintillation with the IPIR index.
    Description: Published
    Description: 5399-5415
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-01
    Description: On 3 November 2021, an interplanetary coronal mass ejection impacted the Earth’s magnetosphere leading to a relevant geomagnetic storm (Kp = 8-), the most intense event that occurred so far during the rising phase of solar cycle 25. This work presents the state of the solar wind before and during the geomagnetic storm, as well as the response of the plasmasphere–ionosphere–thermosphere system in the European sector. To investigate the longitudinal differences, the ionosphere–thermosphere response of the American sector was also analyzed. The plasmasphere dynamics was investigated through field line resonances detected at the European quasi-Meridional Magnetometer Array, while the ionosphere was investigated through the combined use of ionospheric parameters (mainly the critical frequency of the F2 layer, foF2) from ionosondes and Total Electron Content (TEC) obtained from Global Navigation Satellite System receivers at four locations in the European sector, and at three locations in the American one. An original method was used to retrieve aeronomic parameters from observed electron concentration in the ionospheric F region. During the analyzed interval, the plasmasphere, originally in a state of saturation, was eroded up to two Earth’s radii, and only partially recovered after the main phase of the storm. The possible formation of a drainage plume is also observed. We observed variations in the ionospheric parameters with negative and positive phase and reported longitudinal and latitudinal dependence of storm features in the European sector. The relative behavior between foF2 and TEC data is also discussed in order to speculate about the possible role of the topside ionosphere and plasmasphere response at the investigated European site. The American sector analysis revealed negative storm signatures in electron concentration at the F2 region. Neutral composition and temperature changes are shown to be the main reason for the observed decrease of electron concentration in the American sector.
    Description: INGV-MUR project Pianeta Dinamico—The Working Earth (CUP D53J19000170001, law 145/2018), theme 3 The Solar wind–Earth’s magnetosphere Relationships and their Effects on ioNosphere and upper and lower Atmosphere (SERENA)
    Description: Published
    Description: 5765
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: magnetosphere ; ionosphere ; plasmasphere ; geomagnetic storm ; thermosphere ; solar wind–magnetosphere interaction ; 04.05. Geomagnetism ; 01.03. Magnetosphere ; 01.02. Ionosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...