ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2019-01-24
    Description: Hypocentral locations, and depths in particular, are affected by large uncertainties in situations where the available seismic network is sparse and with a small number of local stations recording Pg phases as first arrival (Pg phase is direct wave in the upper crust). In this study, we consider the variability of locations because of the errors associated with arrival time picks, analyzing how this variability, for a constant standard deviation in arrival times, depends on the azimuthal distribution of stations and the number of available Pg phases in the input dataset. Our analysis was carried out on real cases and confirmed the importance of including local stations in the earthquake location process, quantifying how the removal of an increasing number of local stations increased the dispersion of hypocenters. © 2019, Springer Nature B.V.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-19
    Description: Biomass is a spaceborn polarimetric P-band (435 MHz) synthetic aperture radar (SAR) in a dawn–dusk low Earth orbit. Its principal objective is to measure biomass content and change in all the Earth’s forests. The ionosphere introduces the Faraday rotation on every pulse emitted by low-frequency SAR and scintillations when the pulse traverses a region of plasma irregularities, consequently impacting the quality of the imaging. Some of these effects are due to total electron content (TEC) and its gradients along the propagation path. Therefore, an accurate assessment of the ionospheric morphology and dynamics is necessary to properly understand the impact on image quality, especially in the equatorial and tropical regions. To this scope, we have conducted an in-depth investigation of the significant noise budget introduced by the two crests of the equatorial ionospheric anomaly (EIA) over Brazil and Southeast Asia. This paper is characterized by a novel approach to conceive a SAR-oriented ionospheric assessment, aimed at detecting and identifying spatial and temporal TEC gradients, including scintillation effects and traveling ionospheric disturbances, by means of Global Navigation Satellite Systems ground-based monitoring stations. The novelty of this approach resides in the customization of the information about the impact of the ionosphere on SAR imaging as derived by local dense networks of ground instruments operating during the passes of Biomass spacecraft. The results identify the EIA crests as the regions hosting the bulk of irregularities potentially causing degradation on SAR imaging. Interesting insights about the local characteristics of low-latitudes ionosphere are also highlighted.
    Description: Published
    Description: 6412-6424
    Description: 2A. Fisica dell'alta atmosfera
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-25
    Description: Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Nuclear‐Test‐Ban Treaty. Modeling errors of calculated travel times, in addition to the density of the stations, their epicentral distances, and their azimuthal coverage, may have the effect of shifting the computed epicenters far from the real locations, regardless of the accuracy in picking seismic phase arrivals. In the present study, we compare the regional locations for one set of earthquakes obtained by arrival times reported by the Iranian Seismological Center with teleseismic locations obtained by arrival times reported by the International Seismological Center. We found location differences on the order of 10–20 km or larger, affecting both epicentral coordinates and depths. Average travel‐time residuals to each station of the global network were computed for a set of sources located in the study area. We show that systematic shifts of hypocentral coordinates, as well as the sizes of their error ellipses, can be substantially reduced by applying source‐specific station corrections. Finally, the validity of the calibration method was confirmed by a test carried out on a dataset different from that used for computing the travel‐time corrections. This study includes an analysis of the effect of removing arrival times of critical stations from the dataset used for the locations, showing that this effect is largely reduced by the application of travel‐time corrections.
    Description: Published
    Description: 2498-2509
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-14
    Description: Hypocentral locations, and depths in particular, are affected by large uncertainties in situations where the available seismic network is sparse and with a small number of local stations recording Pg phases as first arrival (Pg phase is direct wave in the upper crust). In this study, we consider the variability of locations because of the errors associated with arrival time picks, analyzing how this variability, for a constant standard deviation in arrival times, depends on the azimuthal distribution of stations and the number of available Pg phases in the input dataset. Our analysis was carried out on real cases and confirmed the importance of including local stations in the earthquake location process, quantifying how the removal of an increasing number of local stations increased the dispersion of hypocenters.
    Description: Published
    Description: 393-401
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Democratic People Republic of Korea announced two underground nuclear tests carried out in their territory respectively on October 9th, 2006 and May 25th, 2009. The scarce information on the precise location and the size of those explosions has stimulated various kinds of studies, mostly based on seismological observations, by several National Agencies concerned with the Nuclear Test Ban Treaty verification. We analysed the available seismological data collected through a global high quality network for the two tests. After picking up the arrival times at the various stations, a standard location program has been applied to the observed data. If we use all the available data for each single event, due to the different magnitude and different number of available stations, the locations appear quite different. On the contrary, if we use only the common stations, they happen to be only few km apart from each other and within their respective error ellipses. A more accurate relative location has been carried out by the application of algorithms such as Double Difference Joint Hypocenter Determination (DDJHD) and waveform alignment. The epicentral distance between the two events obtained by these methods is 2 km, with the 2006 event shifted to the ESE with respect to that of 2009. We then used a dataset of VHR TerraSAR-X satellite images to detect possible surface effects of the underground tests. This is the first ever case where these highly performing SAR data have been used to such aim. We applied InSAR processing technique to fully exploit the capabilities of SAR data to measure very short displacements over large areas. Two interferograms have been computed, one co-event and one post-event, to remove possible residual topographic signals. A clear displacement pattern has been highlighted over a mountainous area within the investigated region, measuring a maximum displacement of about 45 mm overall the relief. Hypothesizing that the 2009 nuclear test had been carried out close to the area where the displacement has been observed through the DInSAR technique, its relation with the epicenter location obtained through seismological processing has been discussed as a possible alternative hypothesis with respect to the preferred solutions reported by the Nuclear Explosion Database (NEDB). The distance of about 10 km between the two places can be considered acceptable in light of the possible systematic location shifts commonly observed in the seismological practice over a global scale.
    Description: Published
    Description: Vienna, Austria
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: CTBTO ; Nuclear test ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-11-27
    Description: We present a 1:350,000 high-resolution magnetic anomaly map of Calabria (Southern Italy), obtained by merging the results from two low-altitude aeromagnetic surveys performed in southern and northern Calabria. Magnetic anomalies of Calabria are of low intensity, and mostly range from 11 to –9 nT. Northern Calabria is characterized by positive anomalies in the Tyrrhenian margin (Coastal Chain) that turn into negative values moving eastward in the Sila Massif. Southern Calabria is characterized by slightly positive anomaly values, interrupted by a null magnetic anomaly corridor roughly corresponding to the eastern margin of the Gioia Tauro basin. Finally, anomaly values turn systematically negative in the Messina Straits. Due to the unprecedented resolution (low flying height, spatial sampling along the flight line of ∼5 m and 1–2 km flight line spacing), the new map highlights, in detail, the geometry and setting of the upper crustal features. As Calabria is one of the most seismically active regions in Italy, hit by several high-magnitude earthquakes in recent centuries, the interpretation of this new map will hopefully contribute to new insights into the crustal geological setting, location and dimension of the main seismogenic sources.
    Description: Published
    Description: 116-123
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Description: JCR Journal
    Keywords: Magnetic anomalies ; highresolution aeromagnetic survey ; Calabria ; crustal geological setting ; active faults ; high-resolution magnetic anomaly map of Calabria
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-21
    Description: We compare the locations obtained from arrival times collected by the International Seismological Centre from a network of regional and teleseismic stations for a cluster of Italian earthquakes with the locations of the same events obtained by the dense national seismic network operated by the Istituto Nazionale di Geofisica e Vulcanologia. We find mislocations on the order of 15 km for epicentral coordinates and on the order of 25 km for depths calculated from the regional and teleseismic network and using the standard IASP91 travel times. These mislocations are generally larger than the sizes of the respective error ellipse semi-axes. We then show that systematic shifts of hypocentral coordinates can be substantially reduced by applying source-specific station corrections. Moreover, we find that the size of error ellipses characterizing the teleseismic locations is significantly reduced by the application of such corrections. Our travel time corrections are compared and found fairly consistent with information available in the literature on tomographic studies on the crust and upper mantle in the European-Mediterranean region.
    Description: Published
    Description: 3-19
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Travel time correction ; Teleseismic location ; L'Aquila earthquakes ; Seismic monitoring Tes-Ban Treaty verification
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-18
    Description: The Algerian offshore earthquake of 18 March 2021, Mw 6.0, was felt by people in various Italian regions, also at large epicentral distance. This unusual human perception far from the source prompted us to analyze the waveforms recorded by land seismic stations installed along the Iberian, French, and Italian coasts. On some seismograms of the selected network, prominent T phases are detected. T waves can travel in the SOund Fixing And Ranging (SOFAR) channel over great distances (thousands of kilometers) with little loss in signal strength and be recorded by near‐coastal seismometers after the P (primary) and S (secondary) phases (hence T or tertiary phases). To explain the subjective perception of ground shaking with quantities that are measured on the seismogram, we estimated the empirical macroseismic intensities for both body and T phases and we calculated the body‐wave seismic attenuation. The P‐wave anelastic attenuation analysis shows two main wave propagation patterns that reflect lithosphere heterogeneity of the Algerian, Liguro‐Provençal, and Tyrrhenian basins. We find that in some cases, in particular along the Italian and French coasts, the largest ground shaking is caused by the T phase. Our observations confirm that the central‐western Mediterranean Sea is a favorable site for T‐wave propagation and suggest that the T phases should be taken into account in ground‐shaking hazard assessment for the central‐western Mediterranean.
    Description: In press
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...