ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (7)
  • *Signal Transduction  (5)
  • American Association for the Advancement of Science (AAAS)  (11)
  • Oxford University Press
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (11)
  • Oxford University Press
  • 1
    Publication Date: 2001-08-18
    Description: The homodimeric nickel-containing CO dehydrogenase from the anaerobic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO to CO2. A crystal structure of the reduced enzyme has been solved at 1.6 angstrom resolution. This structure represents the prototype for Ni-containing CO dehydrogenases from anaerobic bacteria and archaea. It contains five metal clusters of which clusters B, B', and a subunit-bridging, surface-exposed cluster D are cubane-type [4Fe-4S] clusters. The active-site clusters C and C' are novel, asymmetric [Ni-4Fe-5S] clusters. Their integral Ni ion, which is the likely site of CO oxidation, is coordinated by four sulfur ligands with square planar geometry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dobbek, H -- Svetlitchnyi, V -- Gremer, L -- Huber, R -- Meyer, O -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1281-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany. dobbek@biochem.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509720" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/*chemistry/*metabolism ; Bacteria, Anaerobic/*enzymology ; Binding Sites ; Carbon Dioxide/metabolism ; Carbon Monoxide/*metabolism ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Electron Transport ; Hydrogen Bonding ; Iron/*chemistry/metabolism ; Ligands ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Nickel/*chemistry/metabolism ; Oxidation-Reduction ; Peptococcaceae/*enzymology ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Sulfur/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-26
    Description: Heme, the iron-containing cofactor essential for the activity of many enzymes, is incorporated into its target proteins by unknown mechanisms. Here, an Escherichia coli hemoprotein, CcmE, was shown to bind heme in the bacterial periplasm by way of a single covalent bond to a histidine. The heme was then released and delivered to apocytochrome c. Thus, CcmE can be viewed as a heme chaperone guiding heme to its appropriate biological partner and preventing illegitimate complex formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulz, H -- Hennecke, H -- Thony-Meyer, L -- New York, N.Y. -- Science. 1998 Aug 21;281(5380):1197-200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mikrobiologisches Institut, Eidgenossische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9712585" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoproteins/metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cytochrome c Group/*metabolism ; Cytochromes c ; Escherichia coli/genetics/*metabolism ; Heme/*metabolism ; Histidine/metabolism ; Mass Spectrometry ; Membrane Proteins/chemistry/genetics/*metabolism ; Molecular Chaperones/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-12-11
    Description: The range of messenger action of a point source of Ca2+ or inositol 1,4,5-trisphosphate (IP3) was determined from measurements of their diffusion coefficients in a cytosolic extract from Xenopus laevis oocytes. The diffusion coefficient (D) of [3H]IP3 injected into an extract was 283 microns 2/s. D for Ca2+ increased from 13 to 65 microns 2/s when the free calcium concentration was raised from about 90 nM to 1 microM. The slow diffusion of Ca2+ in the physiologic concentration range results from its binding to slowly mobile or immobile buffers. The calculated effective ranges of free Ca2+ before it is buffered, buffered Ca2+, and IP3 determined from their diffusion coefficients and lifetimes were 0.1 micron, 5 microns, and 24 microns, respectively. Thus, for a transient point source of messenger in cells smaller than 20 microns, IP3 is a global messenger, whereas Ca2+ acts in restricted domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allbritton, N L -- Meyer, T -- Stryer, L -- 5F32AI0814203/AI/NIAID NIH HHS/ -- MH45324/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1812-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1465619" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium-Transporting ATPases/antagonists & inhibitors ; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology ; Chromatography, High Pressure Liquid ; Cytosol/metabolism ; Diffusion ; Inositol 1,4,5-Trisphosphate/*metabolism ; Kinetics ; Oocytes/drug effects/*metabolism ; *Second Messenger Systems ; *Signal Transduction ; Terpenes/pharmacology ; Thapsigargin ; Time Factors ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-18
    Description: Positive and negative feedback loops are common regulatory elements in biological signaling systems. We discuss core feedback motifs that have distinct roles in shaping signaling responses in space and time. We also discuss approaches to experimentally investigate feedback loops in signaling systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680159/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680159/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brandman, Onn -- Meyer, Tobias -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM030179-25/GM/NIGMS NIH HHS/ -- R01 GM063702/GM/NIGMS NIH HHS/ -- R01 GM063702-06/GM/NIGMS NIH HHS/ -- R01GM030179/GM/NIGMS NIH HHS/ -- R01GM063702/GM/NIGMS NIH HHS/ -- R01MH064801/MH/NIMH NIH HHS/ -- R33 CA120732/CA/NCI NIH HHS/ -- R33 CA120732-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):390-5. doi: 10.1126/science.1160617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California-San Francisco and Howard Hughes Medical Institute, San Francisco, CA 94158, USA. Onn.Brandman@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927383" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; *Calcium Signaling ; Cell Membrane/metabolism ; Chemotaxis, Leukocyte ; Computer Simulation ; Endoplasmic Reticulum/metabolism ; *Feedback, Physiological ; Models, Biological ; Neutrophils/*metabolism/physiology ; Phosphatidylinositol 3-Kinases/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-02-21
    Description: To achieve X-chromosome dosage compensation, organisms must distinguish X chromosomes from autosomes. We identified multiple, cis-acting regions that recruit the Caenorhabditis elegans dosage compensation complex (DCC) through a search for regions of X that bind the complex when detached from X. The DCC normally assembles along the entire X chromosome, but not all detached regions recruit the complex, despite having genes known to be dosage compensated on the native X. Thus, the DCC binds first to recruitment sites, then spreads to neighboring X regions to accomplish chromosome-wide gene repression. From a large chromosomal domain, we defined a 793-base pair fragment that functions in vivo as an X-recognition element to recruit the DCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Csankovszki, Gyorgyi -- McDonel, Patrick -- Meyer, Barbara J -- F32-GM065007/GM/NIGMS NIH HHS/ -- R37-GM30702/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1182-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Carrier Proteins/metabolism ; Chromosomes/metabolism ; Cosmids ; DNA-Binding Proteins/metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; In Situ Hybridization, Fluorescence ; Male ; Models, Genetic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Repetitive Sequences, Nucleic Acid ; X Chromosome/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-10-22
    Description: Positive feedback is a ubiquitous signal transduction motif that allows systems to convert graded inputs into decisive, all-or-none outputs. Here we investigate why the positive feedback switches that regulate polarization of budding yeast, calcium signaling, Xenopus oocyte maturation, and various other processes use multiple interlinked loops rather than single positive feedback loops. Mathematical simulations revealed that linking fast and slow positive feedback loops creates a "dual-time" switch that is both rapidly inducible and resistant to noise in the upstream signaling system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brandman, Onn -- Ferrell, James E Jr -- Li, Rong -- Meyer, Tobias -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM030179-24A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):496-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA, 94305, USA. onn@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16239477" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Signaling ; *Cell Physiological Phenomena ; Computer Simulation ; *Feedback, Physiological ; Mathematics ; *Models, Biological ; Oocytes/physiology ; Phenotype ; Saccharomycetales/cytology/physiology ; *Signal Transduction ; Systems Biology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-10-21
    Description: The structure of the heterodimeric flavocytochrome c sulfide dehydrogenase from Chromatium vinosum was determined at a resolution of 2.53 angstroms. It contains a glutathione reductase-like flavin-binding subunit and a diheme cytochrome subunit. The diheme cytochrome folds as two domains, each resembling mitochondrial cytochrome c, and has an unusual interpropionic acid linkage joining the two heme groups in the interior of the subunit. The active site of the flavoprotein subunit contains a catalytically important disulfide bridge located above the pyrimidine portion of the flavin ring. A tryptophan, threonine, or tyrosine side chain may provide a partial conduit for electron transfer to one of the heme groups located 10 angstroms from the flavin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z W -- Koh, M -- Van Driessche, G -- Van Beeumen, J J -- Bartsch, R G -- Meyer, T E -- Cusanovich, M A -- Mathews, F S -- GM-20530/GM/NIGMS NIH HHS/ -- GM-21277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):430-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939681" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatium/*enzymology ; Computer Graphics ; Crystallography, X-Ray ; Cytochrome c Group/*chemistry ; Electron Transport ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; Oxidoreductases/*chemistry ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-07-07
    Description: Cytokines and growth factors induce tyrosine phosphorylation of signal transducers and activators of transcription (STATs) that directly activate gene expression. Cells stably transformed by the Src oncogene tyrosine kinase were examined for STAT protein activation. Assays of electrophoretic mobility, DNA-binding specificity, and antigenicity indicated that Stat3 or a closely related STAT family member was constitutively activated by the Src oncoprotein. Induction of this DNA-binding activity was accompanied by tyrosine phosphorylation of Stat3 and correlated with Src transformation. These findings demonstrate that Src can activate STAT signaling pathways and raise the possibility that Stat3 contributes to oncogenesis by Src.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, C L -- Meyer, D J -- Campbell, G S -- Larner, A C -- Carter-Su, C -- Schwartz, J -- Jove, R -- CA55652/CA/NCI NIH HHS/ -- DK34171/DK/NIDDK NIH HHS/ -- R01 DK034171/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1995 Jul 7;269(5220):81-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7541555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Growth Inhibitors/pharmacology ; Interferon-gamma/pharmacology ; *Interleukin-6 ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Mice ; Molecular Sequence Data ; Oncogene Protein pp60(v-src)/*physiology ; Phosphorylation ; Phosphotyrosine ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/*metabolism ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-03
    Description: The plant hormone abscisic acid (ABA) mediates various responses such as stomatal closure, the maintenance of seed dormancy, and the inhibition of plant growth. All three responses are affected in the ABA-insensitive mutant abi1 of Arabidopsis thaliana, suggesting that an early step in the signaling of ABA is controlled by the ABI1 locus. The ABI1 gene was cloned by chromosome walking, and a missense mutation was identified in the structural gene of the abi1 mutant. The ABI1 gene encodes a protein with high similarity to protein serine or threonine phosphatases of type 2C with the novel feature of a putative Ca2+ binding site. Thus, the control of the phosphorylation state of cell signaling components by the ABI1 product could mediate pleiotropic hormone responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, K -- Leube, M P -- Grill, E -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1452-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Sciences, Swiss Federal Institute of Technology, Zurich.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197457" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Arabidopsis/enzymology/genetics/*metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcium/metabolism ; Chromosome Walking ; Cloning, Molecular ; Genes, Plant ; Genetic Markers ; Molecular Sequence Data ; Mutation ; Phosphoprotein Phosphatases/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-07-26
    Description: Biological formation and consumption of molecular hydrogen (H2) are catalyzed by hydrogenases, of which three phylogenetically unrelated types are known: [NiFe]-hydrogenases, [FeFe]-hydrogenases, and [Fe]-hydrogenase. We present a crystal structure of [Fe]-hydrogenase at 1.75 angstrom resolution, showing a mononuclear iron coordinated by the sulfur of cysteine 176, two carbon monoxide (CO) molecules, and the sp2-hybridized nitrogen of a 2-pyridinol compound with back-bonding properties similar to those of cyanide. The three-dimensional arrangement of the ligands is similar to that of thiolate, CO, and cyanide ligated to the low-spin iron in binuclear [NiFe]- and [FeFe]-hydrogenases, although the enzymes have evolved independently and the CO and cyanide ligands are not found in any other metalloenzyme. The related iron ligation pattern of hydrogenases exemplifies convergent evolution and presumably plays an essential role in H2 activation. This finding may stimulate the ongoing synthesis of catalysts that could substitute for platinum in applications such as fuel cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shima, Seigo -- Pilak, Oliver -- Vogt, Sonja -- Schick, Michael -- Stagni, Marco S -- Meyer-Klaucke, Wolfram -- Warkentin, Eberhard -- Thauer, Rudolf K -- Ermler, Ulrich -- New York, N.Y. -- Science. 2008 Jul 25;321(5888):572-5. doi: 10.1126/science.1158978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Terrestrische Mikrobiologie and Laboratorium fur Mikrobiologie, Fachbereich Biologie, Philipps-Universitat Marburg, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany. shima@mpi-marburg.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653896" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/chemistry ; Binding Sites ; Carbon Monoxide/chemistry ; Catalytic Domain ; Coenzymes/chemistry ; Crystallography, X-Ray ; Cyanides/chemistry/metabolism ; Dimerization ; Evolution, Molecular ; Holoenzymes/chemistry ; Hydrogen/chemistry/*metabolism ; Hydrogenase/*chemistry/isolation & purification/metabolism ; Iron/chemistry ; Ligands ; Methane/biosynthesis ; Methanococcales/*enzymology ; Models, Molecular ; Oxidation-Reduction ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...