ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-12-16
    Description: Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuber, M T -- Smith, D E -- Solomon, S C -- Abshire, J B -- Afzal, R S -- Aharonson, O -- Fishbaugh, K -- Ford, P G -- Frey, H V -- Garvin, J B -- Head, J W -- Ivanov, A B -- Johnson, C L -- Muhleman, D O -- Neumann, G A -- Pettengill, G H -- Phillips, R J -- Sun, X -- Zwally, H J -- Banerdt, W B -- Duxbury, T C -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2053-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. zuber@tharsis.gsfc.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851922" target="_blank"〉PubMed〈/a〉
    Keywords: *Carbon Dioxide ; Extraterrestrial Environment ; *Ice ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-29
    Description: Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, D E -- Zuber, M T -- Solomon, S C -- Phillips, R J -- Head, J W -- Garvin, J B -- Banerdt, W B -- Muhleman, D O -- Pettengill, G H -- Neumann, G A -- Lemoine, F G -- Abshire, J B -- Aharonson, O -- Brown, C D -- Hauck, S A -- Ivanov, A B -- McGovern, P J -- Zwally, H J -- Duxbury, T C -- New York, N.Y. -- Science. 1999 May 28;284(5419):1495-503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Directorate, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA. dsmith@tharsis.gsfc.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348732" target="_blank"〉PubMed〈/a〉
    Keywords: *Evolution, Planetary ; Extraterrestrial Environment ; Ice ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-04-03
    Description: Loading of the lithosphere of Mars by the Tharsis rise explains much of the global shape and long-wavelength gravity field of the planet, including a ring of negative gravity anomalies and a topographic trough around Tharsis, as well as gravity anomaly and topographic highs centered in Arabia Terra and extending northward toward Utopia. The Tharsis-induced trough and antipodal high were largely in place by the end of the Noachian Epoch and exerted control on the location and orientation of valley networks. The release of carbon dioxide and water accompanying the emplacement of approximately 3 x 10(8) cubic kilometers of Tharsis magmas may have sustained a warmer climate than at present, enabling the formation of ancient valley networks and fluvial landscape denudation in and adjacent to the large-scale trough.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, R J -- Zuber, M T -- Solomon, S C -- Golombek, M P -- Jakosky, B M -- Banerdt, W B -- Smith, D E -- Williams, R M -- Hynek, B M -- Aharonson, O -- Hauck , S A 2nd -- New York, N.Y. -- Science. 2001 Mar 30;291(5513):2587-91. Epub 2001 Mar 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11283367" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Carbon Dioxide ; *Evolution, Planetary ; Extraterrestrial Environment ; Gravitation ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-03-28
    Description: The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, D E -- Zuber, M T -- Frey, H V -- Garvin, J B -- Head, J W -- Muhleman, D O -- Pettengill, G H -- Phillips, R J -- Solomon, S C -- Zwally, H J -- Banerdt, W B -- Duxbury, T C -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1686-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Directorate, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497281" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Ice ; *Mars ; Spacecraft
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-03-10
    Description: Topography and gravity measured by the Mars Global Surveyor have enabled determination of the global crust and upper mantle structure of Mars. The planet displays two distinct crustal zones that do not correlate globally with the geologic dichotomy: a region of crust that thins progressively from south to north and encompasses much of the southern highlands and Tharsis province and a region of approximately uniform crustal thickness that includes the northern lowlands and Arabia Terra. The strength of the lithosphere beneath the ancient southern highlands suggests that the northern hemisphere was a locus of high heat flow early in martian history. The thickness of the elastic lithosphere increases with time of loading in the northern plains and Tharsis. The northern lowlands contain structures interpreted as large buried channels that are consistent with northward transport of water and sediment to the lowlands before the end of northern hemisphere resurfacing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuber, M T -- Solomon, S C -- Phillips, R J -- Smith, D E -- Tyler, G L -- Aharonson, O -- Balmino, G -- Banerdt, W B -- Head, J W -- Johnson, C L -- Lemoine, F G -- McGovern, P J -- Neumann, G A -- Rowlands, D D -- Zhong, S -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1788-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. zuber@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710301" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Evolution, Planetary ; *Extraterrestrial Environment ; Geologic Sediments ; Gravitation ; *Mars ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-02-26
    Description: Mars was most active during its first billion years. The core, mantle, and crust formed within approximately 50 million years of solar system formation. A magnetic dynamo in a convecting fluid core magnetized the crust, and the global field shielded a more massive early atmosphere against solar wind stripping. The Tharsis province became a focus for volcanism, deformation, and outgassing of water and carbon dioxide in quantities possibly sufficient to induce episodes of climate warming. Surficial and near-surface water contributed to regionally extensive erosion, sediment transport, and chemical alteration. Deep hydrothermal circulation accelerated crustal cooling, preserved variations in crustal thickness, and modified patterns of crustal magnetization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, Sean C -- Aharonson, Oded -- Aurnou, Jonathan M -- Banerdt, W Bruce -- Carr, Michael H -- Dombard, Andrew J -- Frey, Herbert V -- Golombek, Matthew P -- Hauck, Steven A 2nd -- Head, James W 3rd -- Jakosky, Bruce M -- Johnson, Catherine L -- McGovern, Patrick J -- Neumann, Gregory A -- Phillips, Roger J -- Smith, David E -- Zuber, Maria T -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1214-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA. scs@dtm.ciw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731435" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Climate ; Extraterrestrial Environment ; Magnetics ; *Mars ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...