ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-02
    Description: Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Novembre, John -- Johnson, Toby -- Bryc, Katarzyna -- Kutalik, Zoltan -- Boyko, Adam R -- Auton, Adam -- Indap, Amit -- King, Karen S -- Bergmann, Sven -- Nelson, Matthew R -- Stephens, Matthew -- Bustamante, Carlos D -- R01 GM083606/GM/NIGMS NIH HHS/ -- R01 GM083606-01/GM/NIGMS NIH HHS/ -- R01 GM083606-02/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):98-101. doi: 10.1038/nature07331. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Interdepartmental Program in Bioinformatics, University of California-Los Angeles, Los Angeles, California 90095, USA. jnovembre@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758442" target="_blank"〉PubMed〈/a〉
    Keywords: Emigration and Immigration ; Europe/ethnology ; Genetic Variation/*genetics ; *Genetics, Population ; Genome, Human/genetics ; Genome-Wide Association Study ; Genotype ; *Geography ; Humans ; Phylogeny ; Polymorphism, Single Nucleotide ; Principal Component Analysis ; Quantitative Trait, Heritable ; Sample Size
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-23
    Description: Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV-human protein-protein interactions involving 435 individual human proteins, with approximately 40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310911/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310911/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jager, Stefanie -- Cimermancic, Peter -- Gulbahce, Natali -- Johnson, Jeffrey R -- McGovern, Kathryn E -- Clarke, Starlynn C -- Shales, Michael -- Mercenne, Gaelle -- Pache, Lars -- Li, Kathy -- Hernandez, Hilda -- Jang, Gwendolyn M -- Roth, Shoshannah L -- Akiva, Eyal -- Marlett, John -- Stephens, Melanie -- D'Orso, Ivan -- Fernandes, Jason -- Fahey, Marie -- Mahon, Cathal -- O'Donoghue, Anthony J -- Todorovic, Aleksandar -- Morris, John H -- Maltby, David A -- Alber, Tom -- Cagney, Gerard -- Bushman, Frederic D -- Young, John A -- Chanda, Sumit K -- Sundquist, Wesley I -- Kortemme, Tanja -- Hernandez, Ryan D -- Craik, Charles S -- Burlingame, Alma -- Sali, Andrej -- Frankel, Alan D -- Krogan, Nevan J -- P01 AI090935/AI/NIAID NIH HHS/ -- P01 AI090935-02/AI/NIAID NIH HHS/ -- P01 GM073732-05/GM/NIGMS NIH HHS/ -- P41 GM103481/GM/NIGMS NIH HHS/ -- P41 RR001081/RR/NCRR NIH HHS/ -- P41RR001614/RR/NCRR NIH HHS/ -- P50 GM081879/GM/NIGMS NIH HHS/ -- P50 GM081879-02/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50 GM082250-05/GM/NIGMS NIH HHS/ -- P50GM081879/GM/NIGMS NIH HHS/ -- P50GM082545/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- England -- Nature. 2011 Dec 21;481(7381):365-70. doi: 10.1038/nature10719.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22190034" target="_blank"〉PubMed〈/a〉
    Keywords: Affinity Labels ; Amino Acid Sequence ; Conserved Sequence ; Eukaryotic Initiation Factor-3/chemistry/metabolism ; HEK293 Cells ; HIV Infections/metabolism/virology ; HIV Protease/metabolism ; HIV-1/*chemistry/*metabolism/physiology ; *Host-Pathogen Interactions ; Human Immunodeficiency Virus Proteins/analysis/chemistry/isolation & ; purification/*metabolism ; Humans ; Immunoprecipitation ; Jurkat Cells ; Mass Spectrometry ; Protein Binding ; Protein Interaction Mapping/*methods ; Protein Interaction Maps/*physiology ; Reproducibility of Results ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...