ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-13
    Description: The most abundant mRNA post-transcriptional modification is N(6)-methyladenosine (m(6)A), which has broad roles in RNA biology. In mammalian cells, the asymmetric distribution of m(6)A along mRNAs results in relatively less methylation in the 5' untranslated region (5'UTR) compared to other regions. However, whether and how 5'UTR methylation is regulated is poorly understood. Despite the crucial role of the 5'UTR in translation initiation, very little is known about whether m(6)A modification influences mRNA translation. Here we show that in response to heat shock stress, certain adenosines within the 5'UTR of newly transcribed mRNAs are preferentially methylated. We find that the dynamic 5'UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well-characterized m(6)A 'reader'. Upon heat shock stress, the nuclear YTHDF2 preserves 5'UTR methylation of stress-induced transcripts by limiting the m(6)A 'eraser' FTO from demethylation. Remarkably, the increased 5'UTR methylation in the form of m(6)A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single m(6)A modification site in the 5'UTR enables translation initiation independent of the 5' end N(7)-methylguanosine cap. The elucidation of the dynamic features of 5'UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m(6)A, but also uncovers a previously unappreciated translational control mechanism in heat shock response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jun -- Wan, Ji -- Gao, Xiangwei -- Zhang, Xingqian -- Jaffrey, Samie R -- Qian, Shu-Bing -- DA037150/DA/NIDA NIH HHS/ -- DP2OD006449/OD/NIH HHS/ -- R01AG042400/AG/NIA NIH HHS/ -- England -- Nature. 2015 Oct 22;526(7574):591-4. doi: 10.1038/nature15377. Epub 2015 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA. ; Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York City, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26458103" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Adenosine/*analogs & derivatives/metabolism ; Animals ; Cell Line ; Cell Nucleus/metabolism ; Fibroblasts/cytology/metabolism ; *Gene Expression Regulation ; HSP70 Heat-Shock Proteins/genetics ; *Heat-Shock Response/genetics ; *Methylation ; Mice ; Mixed Function Oxygenases/antagonists & inhibitors/metabolism ; Oxo-Acid-Lyases/antagonists & inhibitors/metabolism ; *Peptide Chain Initiation, Translational ; RNA Caps/metabolism ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...