ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-10
    Description: Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533874/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533874/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Dohoon -- Fiske, Brian P -- Birsoy, Kivanc -- Freinkman, Elizaveta -- Kami, Kenjiro -- Possemato, Richard L -- Chudnovsky, Yakov -- Pacold, Michael E -- Chen, Walter W -- Cantor, Jason R -- Shelton, Laura M -- Gui, Dan Y -- Kwon, Manjae -- Ramkissoon, Shakti H -- Ligon, Keith L -- Kang, Seong Woo -- Snuderl, Matija -- Vander Heiden, Matthew G -- Sabatini, David M -- 5P30CA14051/CA/NCI NIH HHS/ -- AI07389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- K08 NS087118/NS/NINDS NIH HHS/ -- K08-NS087118/NS/NINDS NIH HHS/ -- K99 CA168940/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA168653/CA/NCI NIH HHS/ -- R01CA168653/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 16;520(7547):363-7. doi: 10.1038/nature14363. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [4] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [5] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [3] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Human Metabolome Technologies, Inc., Tsuruoka 997-0052, Japan. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [4] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [5] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA [6] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Human Metabolome Technologies America, Inc., Boston, Massachusetts 02134, USA. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ; 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Pathology, NYU Langone Medical Center and Medical School, New York, New York 10016, USA. ; 1] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [3] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA [4] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855294" target="_blank"〉PubMed〈/a〉
    Keywords: Acetone/analogs & derivatives/metabolism/toxicity ; Animals ; Brain Neoplasms/blood supply/enzymology/*metabolism/*pathology ; Cell Hypoxia ; Cell Line, Tumor ; Cell Survival ; Female ; Glioblastoma/blood supply/enzymology/*metabolism/*pathology ; Glycine/*metabolism ; Glycine Dehydrogenase (Decarboxylating)/antagonists & inhibitors/metabolism ; Glycine Hydroxymethyltransferase/*metabolism ; Humans ; Ischemia/enzymology/*metabolism/pathology ; Mice ; Necrosis ; Oxygen Consumption ; Pyruvaldehyde/metabolism/toxicity ; Pyruvate Kinase/metabolism ; Tumor Microenvironment ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-23
    Description: In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Cantley, Lewis C -- Thompson, Craig B -- R01 CA092660/CA/NCI NIH HHS/ -- R01 CA092660-09/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19460998" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Aerobiosis ; Amino Acids/biosynthesis ; Animals ; *Cell Proliferation ; Glucose/metabolism ; *Glycolysis ; Humans ; Lipids/biosynthesis ; Metabolic Networks and Pathways ; Mutation ; Neoplasms/genetics/*metabolism/*pathology ; Nucleotides/biosynthesis ; Oxidative Phosphorylation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-05
    Description: Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys(358). This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys(358) to Ser(358) oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471535/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471535/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anastasiou, Dimitrios -- Poulogiannis, George -- Asara, John M -- Boxer, Matthew B -- Jiang, Jian-kang -- Shen, Min -- Bellinger, Gary -- Sasaki, Atsuo T -- Locasale, Jason W -- Auld, Douglas S -- Thomas, Craig J -- Vander Heiden, Matthew G -- Cantley, Lewis C -- 1P30CA147882/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01-CA089021/CA/NCI NIH HHS/ -- P01-CA117969-04/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM056203-13/GM/NIGMS NIH HHS/ -- R03MH085679/MH/NIMH NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1278-83. doi: 10.1126/science.1211485. Epub 2011 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beth Israel Deaconess Medical Center, Department of Medicine-Division of Signal Transduction, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22052977" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/pharmacology ; Amino Acid Substitution ; Animals ; Antioxidants/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cysteine/chemistry ; Diamide/pharmacology ; Enzyme Activators/pharmacology ; Glucose/metabolism ; Glutathione/metabolism ; Humans ; Mice ; Mice, Nude ; Mutant Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Neoplasm Transplantation ; Neoplasms, Experimental/metabolism/pathology ; Oxidation-Reduction ; Oxidative Stress ; Pentose Phosphate Pathway ; Protein Subunits ; Pyruvate Kinase/*antagonists & inhibitors/chemistry/genetics/metabolism ; Reactive Oxygen Species/*metabolism ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...