ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-08
    Description: Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Schreiber, S L -- New York, N.Y. -- Science. 2000 Sep 8;289(5485):1760-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomics Research, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. gavin_macbeath@harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10976071" target="_blank"〉PubMed〈/a〉
    Keywords: Biochemistry/*methods ; Biotin/metabolism ; Digoxigenin/metabolism ; Fluorescence ; Fluorescent Dyes ; Ligands ; *Molecular Probe Techniques ; Phosphorylation ; Piperazines/pharmacology ; *Protein Binding ; Protein Folding ; Protein Kinases/*metabolism ; Proteins/*chemistry/*metabolism ; Robotics ; Serum Albumin, Bovine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...