ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Cell Lineage/drug effects  (1)
  • Brachypodium/genetics  (1)
  • 2010-2014  (2)
  • 1
    Publication Date: 2012-07-31
    Description: Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter gamma-aminobutyric acid (GABA) by means of gamma2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of gamma2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell-signal-receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Juan -- Zhong, Chun -- Bonaguidi, Michael A -- Sun, Gerald J -- Hsu, Derek -- Gu, Yan -- Meletis, Konstantinos -- Huang, Z Josh -- Ge, Shaoyu -- Enikolopov, Grigori -- Deisseroth, Karl -- Luscher, Bernhard -- Christian, Kimberly M -- Ming, Guo-li -- Song, Hongjun -- AG040209/AG/NIA NIH HHS/ -- HD069184/HD/NICHD NIH HHS/ -- MH089111/MH/NIMH NIH HHS/ -- NS048271/NS/NINDS NIH HHS/ -- R01 AG040209/AG/NIA NIH HHS/ -- R01 HD069184/HD/NICHD NIH HHS/ -- R01 NS047344/NS/NINDS NIH HHS/ -- R01 NS048271/NS/NINDS NIH HHS/ -- R01 NS065915/NS/NINDS NIH HHS/ -- R21 ES021957/ES/NIEHS NIH HHS/ -- R56 NS047344/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):150-4. doi: 10.1038/nature11306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22842902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Lineage/drug effects ; Cell Proliferation/drug effects ; Dentate Gyrus/cytology/drug effects/metabolism ; Female ; GABA Modulators/pharmacology ; GABA-A Receptor Agonists/pharmacology ; GABA-A Receptor Antagonists/pharmacology ; Interneurons/cytology/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/drug effects/*physiology ; Neural Stem Cells/*cytology/drug effects/metabolism ; *Neurogenesis/drug effects ; Neuroglia/cytology/drug effects/metabolism ; Parvalbumins/metabolism ; Receptors, GABA-A/metabolism ; Signal Transduction/drug effects ; Somatostatin/metabolism ; Stem Cell Niche/drug effects/physiology ; Vasoactive Intestinal Peptide/metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-30
    Description: Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510651/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510651/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brenchley, Rachel -- Spannagl, Manuel -- Pfeifer, Matthias -- Barker, Gary L A -- D'Amore, Rosalinda -- Allen, Alexandra M -- McKenzie, Neil -- Kramer, Melissa -- Kerhornou, Arnaud -- Bolser, Dan -- Kay, Suzanne -- Waite, Darren -- Trick, Martin -- Bancroft, Ian -- Gu, Yong -- Huo, Naxin -- Luo, Ming-Cheng -- Sehgal, Sunish -- Gill, Bikram -- Kianian, Sharyar -- Anderson, Olin -- Kersey, Paul -- Dvorak, Jan -- McCombie, W Richard -- Hall, Anthony -- Mayer, Klaus F X -- Edwards, Keith J -- Bevan, Michael W -- Hall, Neil -- B/J004588/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E004725/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G012865/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G013004/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G013985/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G024650/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H022333/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0900753/Medical Research Council/United Kingdom -- G0900753(91100)/Medical Research Council/United Kingdom -- England -- Nature. 2012 Nov 29;491(7426):705-10. doi: 10.1038/nature11650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genome Research, University of Liverpool, Liverpool L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23192148" target="_blank"〉PubMed〈/a〉
    Keywords: Brachypodium/genetics ; *Bread ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA, Complementary/genetics ; DNA, Plant/genetics ; Evolution, Molecular ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Multigene Family/genetics ; Oryza/genetics ; Polymorphism, Single Nucleotide/genetics ; Polyploidy ; Pseudogenes/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Triticum/classification/*genetics ; Zea mays/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...