ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • (Me3Si)3P7[Cr(CO)5]3[Cr(CO)4]  (1)
  • Bis[tris(1, 2-dimethoxyethan)lithium(1 +)]-1, 4-bis(trimethylsilyl)-1,1,4,4-tetrakis (pentacarbonylchrom(0))-tetraphos-2-phenat(2-)  (1)
  • Reaction of (tBu)2P—P=PX(tBu)2 (X = Br, Cl)  (1)
  • Wiley-Blackwell  (3)
Sammlung
Verlag/Herausgeber
  • Wiley-Blackwell  (3)
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 608 (1992), S. 7-16 
    ISSN: 0044-2313
    Schlagwort(e): Cr carbonyl complexes of Tris(trimethylsilyl)heptaphosphanortricyclene; ; (Me3Si)3P7[Cr(CO)5]1-3; ; (Me3Si)3P7[Cr(CO)5][Cr(CO)4]; ; (Me3Si)3P7[Cr(CO)5]2 × [Cr(CO)4]; ; (Me3Si)3P7[Cr(CO)5]3[Cr(CO)4] ; Chemistry ; Inorganic Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Beschreibung / Inhaltsverzeichnis: Formation and Structures of Chromium Carbonyl Complexes of Tris(trimethylsily)heptanortricyclane (Me3Si)3P7(Me3Si)3P7 1 reacts with one equivalent of Cr(Co)5THF 2 to give the yellow (Me3Si)3P7[Cr(Co)5]4. The Cr(Co)5group is attached to a Pe atom. Yellow (Me3Si)3P7[Cr(CO)5]2 5 is obtained either from reacting 1 with two equivalents of 2, or from 4 with one equivalent of 2. One Cr(CO)5 groups in 5 is coordinated to a Pe atom, the other one to a P,b atom. Similarly, Yellow (Me3Si)3P7[Cr(CO)5]3 6 results from reacting 5 with one equivalent of 2. Two Cr(CO)5 groups in 6 are linked to Pb atoms, and the third one either to a Pe or the Pa atom (assignment not completely clear).Derivatives containing a Pe bridge appear in reactions of 1 with higher amounts of 2. Such, 5 forms mixtures of the red compounds (Me3Si)3P7 × [Cr(CO)5]2[Cr(CO)4] 8 and (Me3Si)3P7[Cr(CO)5] × [Cr(CO)4] 9, and even preferably 9 with four equivalents of 2. In 8, one Cr(CO)5 group is attached to that pe atom which is not engaged in the Cr(CO)4 bridge, and the second to one of the Pb atoms directly adjacent to the bridge. The additional Cr(CO)5 group in 9 is coordinated to the remaining Pb atom directly adjacent to the bridge. In reactions of 5 with even higher amounts of 2, four Cr(CO)5 groups and one Cr(CO)4 bridge attach to the basic P7 skeleton to from the less stable Me3P7[Cr(CO)5]4[Cr(CO)4]. (Me3Si)3P7 1 reacts considerably slower with Cr(CO)5THF 2 than R3P7 (R = Et, iPr).Cr(CO)4NBD 3 reacts with 1, but it was not possible to isolate (Me3Si)3P7[Cr(CO)4]. However, 4 with 3 forms (Me3Si)3P7[Cr(CO)5][Cr(CO)4] 7, and 5 with 3 yields (Me3Si)3P7[Cr(CO)5]2[Cr(CO)4] 8.The structures of 4, 5, 7, 8 or 9 are quite analogous to those of the derivatives of Et3P7 but there exist significant differences in stability and reactivity. While Et3P7[Cr(CO)5]2 in solution rearranges to give the stable Et3P7[Cr(CO)5][Cr(CO)4], the analogous (Me3Si)3P7[Cr(CO)5][Cr(CO)4] 7 is not stable and is not obtained from (Me3Si)3P7[Cr(CO)5]2 5. Et3P7[Cr(CO)5]3 can just be detected spectroscopically and rearranges easily to give Et3P7[Cr(CO)5]2 [Cr(CO)4] whereas (Me3Si)3P7[Cr(CO)5]3 6 can be isolated. These differences are caused by the greater steric requirements of Me3Si groups. The formation of a Pe-Cr(CO)4-Pe bridge, e.g., requires a Me3Si group in 1 to switch from the s to the as position.Whereas many of the complex compounds of R3P7 (R = Et, iPr) crystallize easily, the analogous derivatives of (Me3Si)3P7 did not yield crystals. The structures of the products were assigned by evaluating the coordination shift in their 31P NMR spectra and by comparision of these spectra with those of such derivatives of Et3P7 which previously had been investigated by single crystal structure determinations.
    Notizen: (Me3Si)3P7 1 bildet mit einem Mol Cr(CO)5THF2 (Me3Si)3P7[Cr(CO)5] 4 (gelb), in dem die Cr(CO)5-Gruppe an einem Pe-Atom gebunden ist. (Me3Si)3P7[Cr(CO5]2 5 (gelb) entsteht aus 1 mit zwei Mol Cr(CO)5THF 2 bzw. aus 4 mit einem Mol 2. In 5 ist eine Cr(CO)5-Gruppe an ein Pe-Atom, die zweite an ein Pb-Atom gebunden. (Me3Si)3P7[Cr(Co)5]3 6 (gelb) bildet sich aus 5 mit einem Mol 2. In 6 sind zwei Cr(CO)5-Gruppen an Pb-Atome gebunden, die dritte an das Pa- oder ein Pe-Atom (Zuordnung nicht eindeutig).Bei Umsetzungen von 1 mit höheren Molzahlen 2 bilden sich Derivate mit der Pe-Cr(CO)4-Pe-Brücke. So entstehen aus 5 mit zwei bzw. drei Äquivalenten 2 die roten Verbindungen (Me3Si)3P7[Cr(CO)5]2[Cr(Co)4] 8 und (Me3Si)3P7[Cr(Co)5]3[Cr(Co)4] 9, mit vier Äquivalenten 2 bevorzugt 9. In 8 verbrückt die Cr(Co)4- Gruppe zwei Pe- Atome. Eine Cr(Co)5-Gruppe ist an das dritte Pe- Atom Koordiniert, die zweite an ein Pb-Atom, das direkt mit dem Pe- Atom der Cr(Co)4-Brücke verbunden ist. 9 leitet sich von 8 ab durch Einführung einer weiteren Cr(Co)5-Gruppe an das zweite P6-Atom, das mit dem zweiten Pe-Atom an der Cr(Co)4-Brücke verbunden ist. Bei Umsetzungen von 5 mit noch höheren Molzahlen an 2 lagern sich an 1 insgesamt vier Cr(CO)5- und eine Cr(CO)4-Gruppe an unter Bildung einer weniger beständigen Verbindung (Me3Si)3P7[Cr(Co)5]4[Cr(CO)4]. (Me3Si)3P71 reagiert mit Cr(CO)5 THF 2 erheblich langsamer als R3P7 (R = Et, iPr).Die Umsetzung von 1 mit Cr(CO)4NBD 3 ermöglicht nicht die Isolierung von (Me3Si)3 P7[Cr(CO)4]. Jedoch bildet 3 mit (Me3Si)3P7[Cr(CO)5)] 4 (Me3Si)3P7[Cr(CO)5]× [Cr(CO)4] 7 und mit (Me3Si)3P7[Cr(CO)5]2 5 (Me3Si)3P7[Cr(CO)5]2[Cr(CO)4] 8.Die Verbindungen 4,5,7,8,9 entsprechen in ihrem Aufbau weitgehend den Derivaten des Et3P7, jedoch bestehen gravierende Unterschiede bezüglich Stabilität und Reaktivität. Während sich Et3P7[Cr(Co)5]2 in Lösung zum stabilen Et3P7[Cr(Co)5][Cr(Co)4] umlagert, ist das analoge (Me3Si)3P7[Cr(Co)5][Cr(Co)4] 7 instabil und wird nicht aus (Me3Si)3 P7[Cr(CO)5]2 5 gebildet. Et3P7[Cr(CO)5]3 ist nur spektroskopisch nachweisbar und lagert sich leicht um zum Et3P7[Cr(CO)5]2×[Cr(CO)4], während (Me3Si)3P7[Cr(CO)5]3 6 zu isolieren ist. Die Unterschiede sind durch den größeren Raumbedarf der Me3Si-Gruppe bedingt. So gehen die Me3Si- Gruppen am (Me3Si)3P7 bei Einführung der Pe-Cr(CO)4-Pe-Brücke aus ihrer s- in die as- Position über.Während die Komplexverbindungen des R3P7 (R = Et, iPr)teilweise gut kristallisieren, konnten von denen des (Me3Si)3P7 keine kristalle erhalten werden. Die Strukturen der Verbindungen wurden durch Auswertung der Koordinationsverschiebung im 31P-NMR Spektrum und durch Vergleich mit Spektren von - durch Kristallstrukturuntersuchung gesicherten - Derivaten des Et3P7 abgeleitet.
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 607 (1992), S. 19-25 
    ISSN: 0044-2313
    Schlagwort(e): Reaction of (tBu)2P—P=PX(tBu)2 (X = Br, Cl) ; Chemistry ; Inorganic Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Beschreibung / Inhaltsverzeichnis: Formation and Reaction of the Phosphanylidene-phosphorane (tBu)2P—P = PX(tBu)2 (X = Br, Cl)The formation of (tBu)2P—P = P(Br)tBu2 1 from [(tBu)2P]2PLi and BrH2C—CH2Br begins with an exchange of Li against Br and is then determined by the migration of Br from the secondary P atom in [(tBu)2P]2PBr 6 to the primary P in 1. Similarly, (tBu)2P—P = PC1(tBu)2 2 is obtained starting from PCl3 and LiP(tBu)2. The formation of Phospanylidene - phosporane is not influenced by the choice o the halogene substituent, but the presence of the tBu groups is strongly required. (tBu)2P—P(Li)—P(SiMe3)2 e. g., yields (tBu)2P—P(br)—P(SiMe3)2 with BrH2C—CH2Br; however neither this nor (tBu)2P—P(Cl)—P(SiMe3)2 do rearrange to a Phosphanylidene-phosphorane. The F3C substituent could be neglected in this investigation as [(F3C)2P]2P—SiMe3 cannot be lithiated by means of BuLi.Compounds 1 and 2 display a charateristic temperature dependent behavior. While 1 at +20°C decomposes via the reactive intermediate (tBu)2P—P to from the cyclophosphanes P3[P(tBu)2]4, it gives crystals of [(tBu)2P]2P—p[P(tBu)2]2 at -20°C (from a solution in toluene).Reacting 1 with tBuLi produces (tBu)2P—P = P(H)tBu2 20 and (tBu)2P—P(H)—P(tBu)2 14. Initially, a transmetallation yield tBuBr and (tBu)2 P—P=Pli(tBu)2 21,then LiBr and isobutene are eliminated and 20 is formed which can rearrange to produce 14. Without the elimination of isobutene, 1 react with nBuLi to give 21 witch can be trapped with Me3SiCl as (tBu)2P—P(tBu)223. The main product in in this reaction is however [(tBu)2P]2P—nBu 22.
    Notizen: Dei Bildung von (tBu)2P—P = P(Br)tBu2 1 aus [(tBu)2P]2PLi und BrH2C—CH2Br wird eingeleitet durch den Lithium-Brom-Austausch und ist bedingt durch die anschließende Br-wanderung vom sekundären P-Atom im [(tBu)2P]2PBr 6 zum primären P-Atom in 1 Entsprechend bildet sich (tBu)2P—P = P(CI)tBu2 2 bei de Synthese von [(tBu)2P]2PC1 7 aus PC13 und Lip(tBu)2. Der Reaktionsablauf it unabhängig von den Halogensubstituenten, wird aber entscheidend beeinflußt durch die tBu-Gruppen. So bildet (tBu)2P—P(Li)—P(SiMe3)2 mit BrH2C—CH2Br das (tBu)2P—P(br)—P(SiMe3)2, das aber ebenso wie (tBu)2P—P(CI)—P(SiMe3)2 keine Umlagerung zm Phosphanyliden-Phosphoran eingeht. Der Ein1Uß der F3C-Gruppe auf die Umlagerung war nicht zu untersuchen, da [(F3C)2P]2P—SIMe3 auch mit BuLi nicht in das lithiierte Derivat zu überführen ist.1 und 2 zeigen charakteristische Reaktionen in Abhängigkeit von der Temperatur. Während 1 bei +20°C über das Reaktiv (tBu)2P—P die Cyclophosphane P3[P(tBu)2]4 bildet, Kristallisiert aus den Lösungen von 1 (z. B. Toluol) bei -20°C [(tBu)2P]2P—P[P(tBu)2]2.Die Umsetzungen von 1 mit tBuLi führen zu (tBu)2P—P=(H)tBu2 20 und (tBu)2P—P(H)—P(tBu)2 14. Dei Reaktion wird durch die Umlithiierung zwischen 1 und tBuLi zu tBuBr und (tBu)2P—P=P(Li)tBu2 21 eingeleitet, der unter LiBr-Abspaltung und Isobuten-Eliminierung die Bildung von 20 folgt, das zu 14 umlagert. 21 wird durch Reaktion von 1 mit nBuLi faßbar [Ausblieben der Buten-Eliminierung], das mit Me3SiCl zu (tBu)2P—P(SiMe3)—P(tBu)2 23 abreagiert. Hauptprodukt der Umsetzung ist [(tBu)2P]2P-nBu 22.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 0044-2313
    Schlagwort(e): [Li(DME)3]2{(SiMe3)[Cr(CO)5] 2 P—P = P—P[Cr(CO)5]2[(SiMe3)]} ; Bis[tris(1, 2-dimethoxyethan)lithium(1 +)]-1, 4-bis(trimethylsilyl)-1,1,4,4-tetrakis (pentacarbonylchrom(0))-tetraphos-2-phenat(2-) ; Chemistry ; Inorganic Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Beschreibung / Inhaltsverzeichnis: Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII. Formation and Structure of [Li(DME)3]2{(SiMe3)[Cr(CO)5]2 P-P = P-P[Cr(CO)5]2(SiMe3)}Deep red crystals of the title compound 1 are produced in the reaction of LiP(Me3Si)2[Cr(CO)5] with 1, 2-dibromoethane in DME. The structure of 1 was derived from the investigation of the 31P-NMR spectra and confirmed by a single crystal structure determination. 1 crystallizes in the space group P1 (no. 2); a = 1307.8(5)pm, b = 1373.1(5)pm, c = 1236.1(4)pm, α = 106.22(4)°, β = 88.00(3)°, γ = 115.52(4)° and Z = 1. 1 forms a salt composed of a dianion R2R4′P42- (R = SiMe3, R′ = Cr(CO)5) and solvated Li+ cations. The zigzag shaped dianion possesses the symmetry 1-Ci. The distances d(P—P) = 202.5(1)pm and d(P—P) = 221.9(1)pm correspond to a double bond and single bonds, respectively. The distances d(Cr—P) = 251.1(1) pm and 255.3(1) pm are larger than those observed so far which might be caused by the charge distribution in the dianion.
    Notizen: Bei der Umsetzung von LiP(SiMe3)2[Cr(CO)5] mit 1, 2-Dibromethan in DME entstehen die rubinroten Kristalle der Titelverbindung 1. Die Struktur von 1 folgt aus der Untersuchung der 31P-NMR-Spektren und der Einkristallstrukturbestimmung. 1 kristallisiert in der Raumgruppe P1 (Nr. 2); a = 1 307,8(5) pm. b = 1373,1(5) pm, c = 1236, 1(4) pm, α = 106,22(4)°, β = 88,00(3)°, γ = 115,52(4)° mit Z = 1. 1 bildet ein Salz aus einem Dianion R2R4′P42 (R = SiMe3, R′ = Cr(CO)5) und solvatisierten Li+-Kationen. Das gewinkelte Dianion hat die Symmetrie 1-C1. Die Abstände d(P—P) = 202,5(1) pm und (d)P—P = 221,9(1) pm entsprechen einer Doppelbindung bzw. Einfachbindungen. Die Abstände d (Cr—P) = 251,1(1) pm bzw. 255,3(1) pm sind größer als bisher beobachtete, was auf die Ladungsverteilung im Anion zurückgeführt wird.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...