ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: The Denmark Strait Overflow (DSO) contributes roughly half to the total volume transport of the Nordic overflows. The overflow increases its volume by entraining ambient water as it descends into the subpolar North Atlantic, feeding into the deep branch of the Atlantic Meridional Overturning Circulation. In June 2012, a multiplatform experiment was carried out in the DSO plume on the continental slope off Greenland (180 km downstream of the sill in Denmark Strait), to observe the variability associated with the entrainment of ambient waters into the DSO plume. In this study, we report on two high-dissipation events captured by an autonomous underwater vehicle (AUV) by horizontal profiling in the interfacial layer between the DSO plume and the ambient water. Strong dissipation of turbulent kinetic energy of O( math formula) W kg−1 was associated with enhanced small-scale temperature variance at wavelengths between 0.05 and 500 m as deduced from a fast-response thermistor. Isotherm displacement slope spectra reveal a wave number-dependence characteristic of turbulence in the inertial-convective subrange ( math formula) at wavelengths between 0.14 and 100 m. The first event captured by the AUV was transient, and occurred near the edge of a bottom-intensified energetic eddy. Our observations imply that both horizontal advection of warm water and vertical mixing of it into the plume are eddy-driven and go hand in hand in entraining ambient water into the DSO plume. The second event was found to be a stationary feature on the upstream side of a topographic elevation located in the plume pathway. Flow-topography interaction is suggested to drive the intense mixing at this site.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along-track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross-slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average urn:x-wiley:21699275:media:jgrc24332:jgrc24332-math-0006(108) J m−2 per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2 out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2 in the deep basin, and 3.7 W m−2 above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near-bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer-warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice-free Arctic Ocean in summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...