ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (5)
  • American Geophysical Union  (4)
  • Springer  (1)
  • 1
    Publication Date: 1991-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2006-01-01
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-01
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-17
    Description: We present depth images, from portions of profiles that are close to flow-lines, of Cretaceous oceanic crust in the eastern Central Atlantic. Compared with post-stack time migrations, the images illustrate the improvement resulting from the application of pre-stack depth migration. The images document the scale and geometry of normal faulting in oceanic crust formed over 25 Myr at a half-spreading rate of less than 10 mm yr−1, and the variation in extensional style with position within the spreading segment. Away from major fault zones (FZs), most faults are subplanar, dip more than 35°, are associated with moderate basement relief (0.2–1 km relief) and may penetrate to deep crustal levels. These faults could be related to the lifting of the lithosphere out of the median valley to the flanking mountains. Also observed away from FZs are gently dipping to subhorizontal reflections in the upper crust, which resemble detachment faults. In contrast, the inside corner crust is more rugged, with basement highs rising up to 2 km above the intervening basins. This larger-scale topography is associated with a different style of faulting: the depth images reveal gently dipping (〈35°) faults that are rooted in the deep crust and that project to the ridgeward flank of the dome-shaped large basement highs (1–2 km vertical relief). The faults seem to continue as the ridge-facing flank of these highs and some may extend over the crest of the high to breakaways beyond. In this case, the domal highs that form the exhumed footwall to the faults can be described as oceanic core complexes. These controlling faults are up to 20 km long and have a heave of ∼10 km, sufficient to have accommodated up to 50 per cent extension and to have exhumed deep crustal and perhaps even mantle rocks. We suggest that similar faults can explain the structure and lithologies found at megamullion structures (oceanic core complexes) at inside corners near the present-day spreading ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-10
    Description: We present results of a seismic refraction experiment which determines the crustal and upper-mantle structure of an oceanic core complex (OCC) and its conjugate side located south of the 5°S ridge–transform intersection at the Mid-Atlantic Ridge. The core complex with a corrugated surface has been split by a change in location of active seafloor spreading, resulting in two massifs on either side of the current spreading axis. We applied a joint tomographic inversion of wide-angle reflected and refracted phases for five intersecting seismic profiles. The obtained velocity models are used to constrain the magmatic evolution of the core complex from the analysis of seismic layer 3 and crustal thickness. An abrupt increase of crustal velocities at shallow depth coincides with the onset of the seafloor corrugations at the exposed footwall. The observed velocity structure is consistent with the presence of gabbros directly beneath the corrugated fault surface. The thickness of the high-velocity body is constrained by PmP reflections to vary along and across axis between 〈3 and 5 km. The thickest crust is associated with the central phase of detachment faulting at the higher-elevated northern portion of the massif. Beneath the breakaway of the OCC the crust is 2.5 km thick and reveals significantly lower velocities. This implies that the fault initially exhumed low-velocity material overlying the gabbro plutons. In contrast, crust formed at the conjugate side during OCC formation is characterized by an up to 2-km-thick seismic layer 2 overlying a 1.7-km-thick seismic layer 3. Obtained upper-mantle velocities range from 7.3 to 7.9 km s−1 and seem to increase with distance from the median valley. However, velocities of 7.3–7.5 km s−1 beneath the older portions of the OCC may derive from deep fluid circulation and related hydrothermal alteration, which may likely be facilitated by the subsequent rifting. Our velocity models reveal a strongly asymmetric velocity structure across the ridge axis, associated with the accretion of gabbros into the footwall of the detachment fault and upper-crustal portions concentrated at the conjugate side. Our results do not support a substantial increase in the axial ridge's melt supply related to the final phase of detachment faulting. Hence, the footwall rifting at 5°S may be a generic mechanism of detachment termination under very low melt conditions, as predicted by recent numerical models of Tucholke et al.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 96 (6). pp. 1033-1046.
    Publication Date: 2017-05-18
    Description: The symmetry or asymmetry of the process of continental breakup has been much debated over the last 20 years, with various authors proposing asymmetric simple shear models, others advocating more symmetric, pure shear models and some combinations of the two. The unroofing of vast expanses of sub-continental mantle at non-volcanic margins has led some authors to argue in favour of simple shear models, but supporting evidence is lacking. Subsidence evidence from conjugate margin pairs is equivocal, and the detailed crustal and lithospheric structure of such pairs not generally well enough known to draw firm conclusions. In the Porcupine Basin, where the final stages of break-up are preserved, the development of structural asymmetry is demonstrable, and apparently related to late stage coupling of the crust to the mantle following the complete embrittlement of the crust. This agrees with theoretical modelling results, which predict that asymmetric models can develop only on a lithospheric scale when the crust and mantle are tightly coupled. However, whether such asymmetry is maintained during continued exhumation of the mantle is unclear.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-08
    Description: Hyperextension of continental crust at the Deep Galicia rifted margin in the North Atlantic has been accommodated by the rotation of continental fault blocks, which are underlain by the S reflector, an interpreted detachment fault, along which exhumed and serpentinized mantle peridotite is observed. West of these features, the enigmatic Peridotite Ridge has been inferred to delimit the western extent of the continent-ocean transition. An outstanding question at this margin is where oceanic crust begins, with little existing data to constrain this boundary and a lack of clear seafloor spreading magnetic anomalies. Here we present results from a 160 km long wide-angle seismic profile (Western Extension 1). Travel time tomography models of the crustal compressional velocity structure reveal highly thinned and rotated crustal blocks separated from the underlying mantle by the S reflector. The S reflector correlates with the 6.0–7.0 km s−1 velocity contours, corresponding to peridotite serpentinization of 60–30%, respectively. West of the Peridotite Ridge, shallow and sparse Moho reflections indicate the earliest formation of an anomalously thin oceanic crustal layer, which increases in thickness from ~0.5 km at ~20 km west of the Peridotite Ridge to ~1.5 km, 35 km further west. P wave velocities increase smoothly and rapidly below top basement, to a depth of 2.8–3.5 km, with an average velocity gradient of 1.0 s−1. Below this, velocities slowly increase toward typical mantle velocities. Such a downward increase into mantle velocities is interpreted as decreasing serpentinization of mantle rock with depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 14 (9). pp. 3532-3554.
    Publication Date: 2018-02-28
    Description: Lithospheric formation at slow spreading rates is heterogeneous with multiple modalities, favoring symmetric spreading where magmatism dominates or core complex and inside corner high formation where tectonics dominate. We report microseismicity from three deployments of seismic networks at the Mid-Atlantic Ridge (MAR). Two networks surveyed the MAR near 7 degrees S in the vicinity of the Ascension transform fault. Three inside corner high settings were investigated. However, they remained seismically largely inactive and major seismic activity occurred along the center of the median valley. In contrast, at the Logatchev Massif core complex at 14 degrees 45N seismicity was sparse within the center of the median valley but concentrated along the eastern rift mountains just west of the serpentine hosted Logatchev hydrothermal vent field. To the north and south of the massif, however, seismic activity occurred along the ridge axis, emphasizing the asymmetry of seismicity at the Logatchev segment. Focal mechanisms indicated a large number of reverse faulting events occurring in the vicinity of the vent field at 3-5 km depth, which we interpret to reflect volume expansion accompanying serpentinization. At shallower depth of 2-4 km, some earthquakes in the vicinity of the vent field showed normal faulting behavior, suggesting that normal faults facilitates hydrothermal circulation feeding the vent field. Further, a second set of cross-cutting faults occurred, indicating that the surface location of the field is controlled by local fault systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: High-resolution velocity models developed using full-waveform inversion (FWI) can image fine details of the nature and structure of the subsurface. Using a 3D FWI velocity model of hyper-thinned crust at the Deep Galicia Margin (DGM) west of Iberia, we constrain the nature of the crust at this margin by comparing its velocity structure with those in other similar tectonic settings. Velocities representative of both the upper and lower continental crust are present, but there is no clear evidence for distinct upper and lower crustal layers within the hyper-thinned crust. Our velocity model supports exhumation of the lower crust under the footwalls of fault blocks to accommodate the extension. We used our model to generate a serpentinization map for the uppermost mantle at the DGM, at a depth of 100 ms (∼340 m) below the S-reflector, a low-angle detachment that marks the base of the crust at this margin. We find a good alignment between serpentinized areas and the overlying major block bounding faults on our map, suggesting that those faults played an important role in transporting water to the upper mantle. Further, we observe a weak correlation between fault heaves and serpentinization beneath the hanging-wall blocks, indicating that serpentinization was controlled by complex faulting during rifting. A good match between topographic highs of the S and local highly serpentinized areas of the mantle suggests that the morphology of the S was affected by the volume-increasing process of serpentinization and deformation of the overlying crust. Key Points Exhumation of the lower crust under the footwall of the normal faults to accommodate extension Overlying faults in the crust control water transport to the mantle Topography of the S-reflector is affected by the serpentinization process and deformations of the overlying crust
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...