ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-12-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-24
    Description: Laboratory analyses of lunar samples provide a direct means to identify indigenous volatiles and have been used to argue for the presence of Earth-like water content in the lunar interior. Some volatile elements, however, have been interpreted as evidence for a bulk lunar mantle that is dry. Here we demonstrate that, for a number of lunar pyroclastic deposits, near-infrared reflectance spectra acquired by the Moon Mineralogy Mapper instrument onboard the Chandrayaan-1 orbiter exhibit absorptions consistent with enhanced OH- and/or H2O-bearing materials. These enhancements suggest a widespread occurrence of water in pyroclastic materials sourced from the deep lunar interior, and thus an indigenous origin. Water abundances of up to 150 ppm are estimated for large pyroclastic deposits, with localized values of about 300 to 400 ppm at potential vent areas. Enhanced water content associated with lunar pyroclastic deposits and the large areal extent, widespread distribution and variable chemistry of these deposits on the lunar surface are consistent with significant water in the bulk lunar mantle. We therefore suggest that water-bearing volcanic glasses from Apollo landing sites are not anomalous, and volatile loss during pyroclastic eruptions may represent a significant pathway for the transport of water to the lunar surface. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-04
    Description: Observations from in situ experiments and planetary orbiters have shown that the sedimentary rocks found at Meridiani Planum, Mars were formed in the presence of acidic surface waters. The water was thought to be brought to the surface by groundwater upwelling, and may represent the last vestiges of the widespread occurrence of liquid water on Mars. However, it is unclear why the surface waters were acidic. Here we use geochemical calculations, constrained by chemical and mineralogical data from the Mars Exploration Rover Opportunity, to show that Fe oxidation and the precipitation of oxidized iron (Fe 3+) minerals generate excess acid with respect to the amount of base anions available in the rocks present in outcrop. We suggest that subsurface waters of near-neutral pH and rich in Fe 2+ were rapidly acidified as iron was oxidized on exposure to O 2 or photo-oxidized by ultraviolet radiation at the martian surface. Temporal variation in surface acidity would have been controlled by the availability of liquid water, and as such, low-pH fluids could be a natural consequence of the aridification of the martian surface. Finally, because iron oxidation at Meridiani would have generated large amounts of gaseous H 2, ultimately derived from the reduction of H 2 O, we conclude that surface geochemical processes would have affected the redox state of the early martian atmosphere. © 2010 Macmillan Publishers Limited.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-03-31
    Description: The dwarf planet Ceres is the largest object in the asteroid belt, and is generally thought to be a differentiated body composed primarily of silicate materials and water ice. Some remotely observed features, however, indicate that Ceres may instead have a composition more similar to that of the most common types of carbonaceous meteorite. In particular, Ceres has been shown to have a distinct infrared absorption feature centred at a wavelength of 3.06 m that is superimposed on a broader absorption from 2.8 to 3.7 m (refs5,8), which suggests the presence of OH- or H 2 O-bearing phases. The specific mineral composition of Ceres and its relationship to known meteorite mineral assemblages, however, remains uncertain. Here we show that the spectral features of Ceres can be attributed to the presence of the hydroxide brucite, magnesium carbonates and serpentines, a mineralogy consistent with the aqueous alteration of olivine-rich materials. We therefore suggest that the thermal and aqueous alteration history of Ceres is different from that recorded by carbonaceous meteorites, and that samples from Ceres are not represented in existing meteorite collections. © 2009 Macmillan Publishers Limited.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...