ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (447)
  • Springer  (447)
Collection
Language
  • 1
    Publication Date: 2019-09-23
    Description: The general aim of setting up a central database on benthos and plankton was to integrate long-, medium- and short-term datasets on marine biodiversity. Such a database makes it possible to analyse species assemblages and their changes on spatial and temporal scales across Europe. Data collation lasted from early 2007 until August 2008, during which 67 datasets were collected covering three divergent habitats (rocky shores, soft bottoms and the pelagic environment). The database contains a total of 4,525 distinct taxa, 17,117 unique sampling locations and over 45,500 collected samples, representing almost 542,000 distribution records. The database geographically covers the North Sea (221,452 distribution records), the North-East Atlantic (98,796 distribution records) and furthermore the Baltic Sea, the Arctic and the Mediterranean. Data from 1858 to 2008 are presented in the database, with the longest time-series from the Baltic Sea soft bottom benthos. Each delivered dataset was subjected to certain quality control procedures, especially on the level of taxonomy. The standardisation procedure enables pan-European analyses without the hazard of taxonomic artefacts resulting from different determination skills. A case study on rocky shore and pelagic data in different geographical regions shows a general overestimation of biodiversity when making use of data before quality control compared to the same estimations after quality control. These results prove that the contribution of a misspelled name or the use of an obsolete synonym is comparable to the introduction of a rare species, having adverse effects on further diversity calculations. The quality checked data source is now ready to test geographical and temporal hypotheses on a large scale.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-04
    Description: Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9 × 106 molecule cm−3 and 6 × 108 molecule cm−3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-22
    Description: Research into the effects of ocean acidification (OA) on marine organisms has greatly increased during the past decade, as realization of the potential dramatic impacts has grown. Studies have revealed the multifarious responses of organisms to OA conditions, indicating a high level of intra- and interspecific variation in species’ ability to accommodate these alterations. If we are to provide policy makers with sound, scientific input regarding the expected consequences of OA, we need a broader understanding of these predicted changes. As a group of 20 multi-disciplinary postgraduate students from around the globe, with a study focus on OA, we are a strong representation of ‘next generation’ scientists in this field. In this unique cumulative paper, we review knowledge gaps in terms of assessing the biological impacts of OA, outlining directions for future research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Global-scale studies of marine food webs are rare, despite their necessity for examining and understanding ecosystem level effects of climate variability. Here we review the progress of an international collaboration that compiled regional diet datasets of multiple top predator fishes from the Indian, Pacific and Atlantic Oceans and developed new statistical methods that can be used to obtain a comprehensive ocean-scale understanding of food webs and climate impacts on marine top predators. We loosely define top predators not as species at the apex of the food web, but rather a guild of large predators near the top of the food web. Specifically, we present a framework for world-wide compilation and analysis of global stomach-contents and stable-isotope data of tunas and other large pelagic predatory fishes. To illustrate the utility of the statistical methods, we show an example using yellowfin tuna in a “test” area in the Pacific Ocean. Stomach-contents data were analyzed using a modified (bagged) classification tree approach, which is being prepared as an R statistical software package. Bulk δ15N values of yellowfin tuna muscle tissue were examined using a Generalized Additive Model, after adjusting for spatial differences in the δ15N values of the baseline primary producers predicted by a global coupled ocean circulation-biogeochemical-isotope model. Both techniques in tandem demonstrated the capacity of this approach to elucidate spatial patterns of variations in both forage species and predator trophic positions and have the potential to predict responses to climate change. We believe this methodology could be extended to all marine top predators. Our results emphasize the necessity for quantitative investigations of global-scale datasets when evaluating changes to the food webs underpinning top ocean predators under long-term climatic variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Cephalopods are highly sensitive to environmental conditions and changes at a range of spatial and temporal scales. Relationships documented between cephalopod stock dynamics and environmental conditions are of two main types: those concerning the geographic distribution of abundance, for which the mechanism is often unknown, and those relating to biological processes such as egg survival, growth, recruitment and migration, where mechanisms are sometimes known and in a very few cases demonstrated by experimental evidence. Cephalopods seem to respond to environmental variation both ‘actively’ (e.g. migrating to areas with more favoured environmental conditions for feeding or spawning) and ‘passively’ (growth and survival vary according to conditions experienced, passive migration with prevailing currents). Environmental effects on early life stages can affect life history characteristics (growth and maturation rates) as well as distribution and abundance. Both large-scale atmospheric and oceanic processes and local environmental variation appear to play important roles in species–environment interactions. While oceanographic conditions are of particular significance for mobile pelagic species such as the ommastrephid squids, the less widely ranging demersal and benthic species may be more dependent on other physical habitat characteristics (e.g. substrate and bathymetry). Coastal species may be impacted by variations in water quality and salinity (related to rainfall and river flow). Gaps in current knowledge and future research priorities are discussed. Key research goals include linking distribution and abundance to environmental effects on biological processes, and using such knowledge to provide environmental indicators and to underpin fishery management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-13
    Description: We describe the behaviour of 23 dynamical ocean-atmosphere models, in the context of comparison with observations in a common framework. Fields of tropical sea surface temperature (SST), surface wind stress and upper ocean vertically averaged temperature (VAT) are assessed with regard to annual mean, seasonal cycle, and interannual variability characteristics. Of the participating models, 21 are coupled GCMs, of which 13 use no form of flux adjustment in the tropics. The models vary widely in design, components and purpose: nevertheless several common features are apparent. In most models without flux adjustment, the annual mean equatorial SST in the central Pacific is too cool and the Atlantic zonal SST gradient has the wrong sign. Annual mean wind stress is often too weak in the central Pacific and in the Atlantic, but too strong in the west Pacific. Few models have an upper ocean VAT seasonal cycle like that observed in the equatorial Pacific. Interannual variability is commonly too weak in the models: in particular, wind stress variability is low in the equatorial Pacific. Most models have difficulty in reproducing the observed Pacific 'horseshoe' pattern of negative SST correlations with interannual Niño3 SST anomalies, or the observed Indian-Pacific lag correlations. The results for the fields examined indicate that several substantial model improvements are needed, particularly with regard to surface wind stress.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-27
    Description: An intercomparison is undertaken of the tropical behavior of 17 coupled ocean-atmosphere models in which at least one component may be termed a general circulation model (GCM). The aim is to provide a taxonomy—a description and rough classification—of behavior across the ensemble of models, focusing on interannual variability. The temporal behavior of the sea surface temperature (SST) field along the equator is presented for each model, SST being chosen as the primary variable for intercomparison due to its crucial role in mediating the coupling and because it is a sensitive indicator of climate drift. A wide variety of possible types of behavior are noted among the models. Models with substantial interannual tropical variability may be roughly classified into cases with propagating SST anomalies and cases in which the SST anomalies develop in place. A number of the models also exhibit significant drift with respect to SST climatology. However, there is not a clear relationship between climate drift and the presence or absence of interannual oscillations. In several cases, the mode of climate drift within the tropical Pacific appears to involve coupled feedback mechanisms similar to those responsible for El Niño variability. Implications for coupled-model development and for climate prediction on seasonal to interannual time scales are discussed. Overall, the results indicate considerable sensitivity of the tropical coupled ocean-atmosphere system and suggest that the simulation of the warm-pool/cold-tongue configuration in the equatorial Pacific represents a challenging test for climate model parameterizations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Fluctuations in abundance of dominant species can cause competitive release of resources with consequences on community structure and functioning. In the present study, changes in the intertidal macroinfauna community of an exposed sandy beach were evaluated during two contrasting periods characterized by low and high densities of the yellow clam Amarilladesma mactroides. The increase in clam abundance and biomass was associated with a significant decrease in abundance of the rest of the community. In particular, a decline was observed for the pea crab Austinixa patagoniensis, a commensal species that lives in the burrows of the shrimp Sergio mirim. Our study demonstrates that fluctuations in clam abundance lead to long-term changes in community structure, suggesting the presence of competitive interactions. The environmental stability over the two periods strengthens the hypothesis that the competition between species is crucial for shaping the ecological community. Stable isotope analysis allows discarding trophic competition as mechanism of exclusion. Image maps reveal complementary distribution of species, showing the relevance of the spatial competition, which is mediated by changes in abundance of a third species. Indeed, high densities of A. mactroides reduce the available area for the establishment of the S. mirim burrows, limiting the foraging behavior of its commensal, the pea crab. Such an interaction drives density-dependent exclusion of the pea crab from the intertidal zone following the establishment of the yellow clam population. This study illustrates that spatial competition triggered by the increase of a bed-forming species can have community-wide consequences in exposed sandy beaches
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-07
    Description: The southern African subcontinent and its surrounding oceans accommodate globally unique ecoregions, characterized by exceptional biodiversity and endemism. This diversity is shaped by extended and steep physical gradients or environmental discontinuities found in both ocean and terrestrial biomes. The region’s biodiversity has historically been the basis of life for indigenous cultures and continues to support countless economic activities, many of them unsustainable, ranging from natural resource exploitation, an extensive fisheries industry and various forms of land use to nature-based tourism. Being at the continent’s southern tip, terrestrial species have limited opportunities for adaptive range shifts under climate change, while warming is occurring at an unprecedented rate. Marine climate change effects are complex, as warming may strengthen thermal stratification, while shifts in regional wind regimes influence ocean currents and the intensity of nutrient-enriching upwelling. The flora and fauna of marine and terrestrial southern African biomes are of vital importance for global biodiversity conservation and carbon sequestration. They thus deserve special attention in further research on the impacts of anthropogenic pressures including climate change. Excellent preconditions exist in the form of long-term data sets of high quality to support scientific advice for future sustainable management of these vulnerable biomes.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...