ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 77 (1990), S. 453-453 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Notes: Abstract The southern Namib desert has a vegetation cover of mainly succulent plants in which species of the Mesembryanthemaceae are predominant. Climatically this area is characterized by hot and dry days, and cool and humid nights with episodic rainfalls only in winter. In this environment a great number of species perform a crassulaceaen acid metabolism (CAM). The responses of these plants to water stress as well as the regulation of CAM in the natural habitat are described and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The relation between daily maximal rates of net photosynthesis and plant water status was studied during a dry season on irrigated and non-irrigated, naturally growing, perennial wild plants. Species were examined which differ in phenology, leaf anatomy and morphology: Hammada scoparia, Artemisia herba-alba, Zygophyllum dumosum, and Reaumuria negevensis. Prumus armeniaca which was growing in the run-off farm at Avdat and which has mosomorphic leaves was included in the comparison. All plants differed in their seasonal change in plant water status, and in their seasonal change in daily maximal net photosynthesis. Rates of CO2 uptake were not uniquely related to simultanously measured leaf water potentials. Daily maximal rates of net photosynthesis of non-irrigated plants, and the difference between maximal CO2 uptake of irrigated and non-irrigated plants were examined in relation to pre-dawn water potential. Maximal net photosynthesis rates decreased very rapidly with decrease in pre-dawn water potential or, for Hammada scoparia, they decreased even with a constant level of pre-dawn water potential. Consequently, it was considered necessary to include both time and water potential in a parameter “bar day” describing the accumulated drought stress of the plants. All species showed the same relation between relative maximal net photosynthesis and drought experience as determined by cumulative daily addition of pre-dawn water potentials for the non-irrigated plants since the last rain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The seasonal change in diurnal patterns of net photosynthesis and daily carbon gain is studied in relation to the plant water status of the irrigated and non-irrigated naturally growing desert species Hammada scoparia, Zygophyllum dumosum, Artemisia herba-alba and Reaumuria negevensis. Comparison is made to cultivated Prunus armeniaca. Under non-irrigated natural conditions Hammada scoparia, a C4 plant, showed one-peaked flat diurnal courses of CO2 uptake which changed into a pattern of a high morning peak of CO2 uptake or slightly two-speaked curves in the late dry season. In contrast, the C3 species Zygophyllum dumosum, Artemisia herba-alba and Prunus armeniaca changed from one-peaked to distinct two-peaked patterns. At the end of the dry season, non-irrigated plants showed respiration only. Reaumuria negevensis had one-peaked curves with a low level of CO2 uptake. There is no general relation between day-time CO2 gain and pre-dawn water potential for the investigated species. In order to characterize the effect of soil drought, the CO2 gain during day-time of non-irrigated plants is expressed as a percentage of the CO2 gain of the irrigated counterparts. After an initial period of minimal drought effect, the relative day-time CO2 gain decreases almost linearly with cumulative water stress as determined by the daily addition of pre-dawn water potentials for the non-irrigated plants since the last rainfall. The slope of decrease differs from species to species. The relation of daily CO2 gain to maximal net photosynthesis is discussed. Initially, at a good plant water status, the daily CO2 gain does not decrease in proportion to the maximal photosynthetic rates as a result of stomatal control at high photosynthetic activity. At increasing water stress the daily CO2 gain decreases more than proportionally to the decrease of the maximal rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A portable porometer is described for measuring the steady-state CO2 and H2O exchange rates of leaves under natural conditions. The porometer has an open gas exchange system which monitors the differences in concentrations of CO2 and H2O entering and leaving a cuvette which is clamped on or around leaves. The cuvette is designed to maintain ambient air temperature and humidity around the leaf. This instrument may also be used to determine CO2 response curves in the field. Examples of diurnal courses are presented for attached leaves of different species having high and low rates of CO2 exchange.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leaf gas exchange of Vigna unguiculata was influenced by short-term (day-to-day) changes in soil temperature and the response depended upon the aerial environment. When aerial conditions were constant at 30° C leaf temperature, high air humidity and moderate quantum flux, CO2 assimilation rate and leaf conductance increased with increases in soil temperature from 20 to 35° C, and this response was reversible. Decreases in CO2 assimilation rate and leaf conductance were observed at root temperatures above 30° C when root temperatures were increased from 20° C to 40° C and when air humidity was decreased in steps during the day. In contrast, varying soil temperatures between 20 to 35° C had no influence on gas exchange when shoots were subjected to a wide range of temperatures during each day. The gain ratio ∂A/τE remained constant at different air humidities when root temperature was less than or equal to 30° C indicating optimal gas exchange regulation, but changed with humidity at higher root temperatures. Leaf conductance responded independently from leaf water potential which remained relatively constant during individual experiments. The results indicate that plant responses to high root temperatures may have relevance to plant performance in semi-arid environments. They also illustrate the importance of controlling soil temperatures when studying the responses of potted plants in controlled aerial environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Welwitschia mirabilis is a perennial desert plant with extremely large leaves (0.5–1.0 m broad, 1–2 m long). Leaf temperatures were measured in the field and the energy budget was calculated. The portions of the leaf which were kept above the ground had leaf temperatures which were only 4–6°C above air temperature. In the leaf portions which were in contact with the ground leaf temperatures were 6–12°C above air temperature (absolute maximum 51°C). The important feature in the energy budget ofWelwitschia mirabilis is its high reflectivity (38% of the global radiation). Only about 56% of the global radiation is absorbed by the thick leathery leaves. The energy loss due to convection is of the same order of magnitude as the reflection and it is abouy the same in the portions of leaf on and above the ground. The difference in leaf temperatures found in these portions is due to the loss of thermal radiation from the section of leaf above the ground to the cooler ground which is shaded by the leaf. The provision of a heat sink due to the large area of shade cast by these large leaves is of significance to the existence ofWelwitschia mirabilis in its arid habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Increases in plant biomass are mainly a balance between growth of new leaves and growth of new roots, the new leaves having positive feedback upon the production process and the new roots having positive feedback upon the plant water status. Control of both opposing processes with respect to biomass production may be considered optimal whenever biomass of the plant reaches a maximum without adversely affecting plant water status. This occurs only if all carbohydrates are partitioned into growth of new leaves, unless water uptake is insufficient to meet the additional evaporative demand created by the newly grown leaf area without decreasing the water status of the plant. It is shown by theoretical considerations based upon optimization theory, especially by application of the Pontryagin Maximum Principle, that in this case carbohydrate partitioning is dependent upon the transpiration rate per leaf weight and upon the efficiency of the root at taking up water. Growth of Vigna unguiculata at two levels of air humidity and two levels of water uptake rate by the root was consistent with such a carbohydrate partitioning pattern. Growth of total biomass and its components (leaves, stems, and roots), whole plant transpiration, and the pattern of carbon partitioning were predicted and explained by applying the foregoing principles of optimization in a heuristic model for vegetative growth of an annual.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Tradescantia virginiana L. plants were cultivated under contrasting conditions of temperature, humidity, light quality and intensity, and nutrient status in order to investigate the effect of growth conditions on the water relations parameters of the leaf epidermal cells. Turgor pressure (P), volumetric elastic modulus (ɛ), half-time of water potential equilibration (T 1/2), hydraulic conductivity (L p ) were measured with the miniaturized pressure probe in single cells of the upper and lower epidermis of leaves. Turgor differed (range: 0.1 bar to 7.2 bar) between treatments with lowest values under warm and humid conditions and additional supply of fertilizer, and highest values under conditions of low air humidity and low nutrient supply. The volumetric elastic modulus changed by 2 orders of magnitude (range: 3.0 bar to 350 bar, 158 cells), but ɛ was only affected by the treatments, in as much as it was dependent on turgor. The turgor dependence of ɛ, measured on intact leaves of T. virginiana, was similar to that for cells of the isolated (peeled) lower epidermis, where ɛ as a function of turgor was linear over the whole range of turgors. This result has implications for the discussion of pressure/volume curves as measured by the pressure bomb where changes in “bulk leaf ɛ” are frequently discussed as “adaptations” to certain treatments. The measurements of the hydraulic conductivity indicate that this parameter varies between treatments (range of means: 2.4×10-6 cm s-1 bar-1 to 13.4×10-6 cm s-1 bar-1). There was a negative correlation for L p in cells of intact leaves as a function of turgor which was altered by the growing conditions. However, a correlation with turgor could not be found for cells from isolated epidermis or cells from a uniform population of plants. The large variation in L p from cell to cell observed in the present and in previous studies was accounted for in a study of 100 cells from a uniform population of plants by the propagation of measurement errors in calculating L p . The results suggest that in T. virginiana cellular water relations are changed mainly by the turgor dependence of ɛ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1986), S. 61-69 
    ISSN: 1432-2285
    Keywords: Branch cross-sectional area ; Leaf area ; Leaf biomass ; Picea abies ; Sapwood area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The relationship of leaf biomass and leaf area to the conductive area of stems and branches was investigated in Picea abies. A total of 30 trees were harvested to determine if these relationships were different in different crown zones and in trees growing with and without competition for light. Two methods were compared. In the first, data were accumulated from crown zones situated at the top of trees to the bottom; in the second, data were used from individual crown zones. The results indicated that the latter method is much more sensitive in detecting differences in the relationship of leaf biomass or leaf area to conductive area. The analysis also indicated that ratios such as leaf area/sapwood area are frequently size-dependent. This size-dependency can in some cases result in the differences being abscured, but more often leads to the false impression that the relationship between the variables changes. The relationship between leaf biomass and leaf area and conductive area of stems or branches was different in different crown zones and under different growth conditions. The slopes of these regressions appear to increase with decreasing transpirational demand and decrease with increasing hydraulic conductivity. The intercepts are probably related to the amount of identified sapwood actually involved in water conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...