ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-16
    Description: Background: Hybridization among Louisiana Irises has been well established and the genetic architecture of reproductive isolation is known to affect the potential for and the directionality of introgression between taxa. Here we use co-dominant markers to identify regions where QTL are located both within and between backcross maps to compare the genetic architecture of reproductive isolation and fitness traits across treatments and years. Results: QTL mapping was used to elucidate the genetic architecture of reproductive isolation between Iris fulva and Iris brevicaulis. Homologous co-dominant EST-SSR markers scored in two backcross populations between I. fulva and I. brevicaulis were used to generate genetic linkage maps. These were used as the framework for mapping QTL associated with variation in 11 phenotypic traits likely responsible for reproductive isolation and fitness. QTL were dispersed throughout the genome, with the exception of one region of a single linkage group (LG) where QTL for flowering time, sterility, and fruit production clustered. In most cases, homologous QTL were not identified in both backcross populations, however, homologous QTL for flowering time, number of growth points per rhizome, number of nodes per inflorescence, and number of flowers per node were identified on several linkage groups. Conclusion: Two different traits affecting reproductive isolation, flowering time and sterility, exhibit different genetic architectures, with numerous QTL across the Iris genome controlling flowering time and fewer, less distributed QTL affecting sterility. QTL for traits affecting fitness are largely distributed across the genome with occasional overlap, especially on LG 4, where several QTL increasing fitness and decreasing sterility cluster. Given the distribution and effect direction of QTL affecting reproductive isolation and fitness, we have predicted genomic regions where introgression may be more likely to occur (those regions associated with an increase in fitness and unlinked to loci controlling reproductive isolation) and those that are less likely to exhibit introgression (those regions linked to traits decreasing fitness and reproductive isolation).
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-01
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-15
    Description: Background Hybridization among Louisiana Irises has been well established and the genetic architecture of reproductive isolation is known to affect the potential for and the directionality of introgression between taxa. Here we use co-dominant markers to identify regions where QTL are located both within and between backcross maps to compare the genetic architecture of reproductive isolation and fitness traits across treatments and years. Results QTL mapping was used to elucidate the genetic architecture of reproductive isolation between Iris fulva and Iris brevicaulis. Homologous co-dominant EST-SSR markers scored in two backcross populations between I. fulva and I. brevicaulis were used to generate genetic linkage maps. These were used as the framework for mapping QTL associated with variation in 11 phenotypic traits likely responsible for reproductive isolation and fitness. QTL were dispersed throughout the genome, with the exception of one region of a single linkage group (LG) where QTL for flowering time, sterility, and fruit production clustered. In most cases, homologous QTL were not identified in both backcross populations, however, homologous QTL for flowering time, number of growth points per rhizome, number of nodes per inflorescence, and number of flowers per node were identified on several linkage groups. Conclusions Two different traits affecting reproductive isolation, flowering time and sterility, exhibit different genetic architectures, with numerous QTL across the Iris genome controlling flowering time and fewer, less distributed QTL affecting sterility. QTL for traits affecting fitness are largely distributed across the genome with occasional overlap, especially on LG 4, where several QTL increasing fitness and decreasing sterility cluster. Given the distribution and effect direction of QTL affecting reproductive isolation and fitness, we have predicted genomic regions where introgression may be more likely to occur (those regions associated with an increase in fitness and unlinked to loci controlling reproductive isolation) and those that are less likely to exhibit introgression (those regions linked to traits decreasing fitness and reproductive isolation).
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 61 (1966), S. 205-223 
    ISSN: 1615-6102
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Long, rigid, rod-like structures found in the culture medium of several marine dinoflagellates are shown in this report to have fine transverse bandings characteristic of extruded trichocysts. These structures in genera such asGonyaulax are believed to pass through the heavily plated surface via narrow pores. In the resting or “charged” form, trichocysts are found to have an elaborate crystalline core connected by a series of fibers and still finer fibrils to the apex of an enclosing sac. The walls of this sac consist of a single membrane and fine thread-like hoops or spirals. The design of the whole charged trichocyst is suggestive of a mechanical sensing device. Trichocysts are found to originate in membrane-limited vesicles which are localized within a spherical shell composed of Golgi bodies. Initially these vesicles contain homogeneous materials, but with increasing development a crystal lattice appears and ultimately the resting trichocyst core evolves. At this point the trichocyst leaves the Golgi area and migrates elsewhere in the cytoplasm. The charged trichocyst core is found to be waterbut not acetone-soluble in contrast to the discharged trichocyst which is unaffected by either solvent. These facts together with the finding of shafts apparently polymerizing from amorphous contents are interpreted as supporting the hydration theory of trichocyst discharge. Finally, the striking similarities between the origin and structure of extruded trichocyst shafts and the origin and structure of collagen fibers are discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-901X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Copper(II) complexes of the 3-pyrrolidinylthiosemicarbazones of 2-acetylpyridine and 2-acetylpyridineN-oxide have been prepared and their physical and spectral properties determined. Growth inhibition ofAspergillus niger, Paecilomyces variotii, Penicillium rubrum, andAspergillus terreus by thiosemicarbazones and their copper(II) complexes has been measured. These results are compared to 2-acetylpyridine 3-azacyclothiosemicarbazone ligand complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1615-6102
    Keywords: Membrane skeleton ; Euglena ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Surface isolates or membrane skeletons from surface isolates can maintain the cell and surface form characteristic of euglenoids. We now report that the plasma membrane alone obtained by trypsin or urea digestion of surface isolates can also maintain surface form, but the membrane skeleton is able to produce striking changes in membrane organization. Trypsin digests microtubules, the membrane skeleton and partially digests the major integral membrane protein from surface isolates but does not alter the paracrystalline plasma membrane interior. Extraction of surface isolates with 4M urea leaves an insoluble plasma membrane and a subset of proteins arranged perpendicularly to the membrane surface. To resolve further the relationship between the plasma membrane and the membrane skeleton we have perturbed membrane organization by extraction of surface isolates with NaOH and find that readdition of the extract followed by neutralization restored important features of the membrane skeleton and caused patching of the membrane interior. Biochemically, the reassembled membrane skeleton consisted of 80 and 86 kD polypeptides and other less abundant proteins, and structurally the reassembled membrane skeleton was about the same thickness as the native membrane skeleton. Reassembly of the membrane skeleton appeared to be saturatable in that addition of an excess of extract had no effect on the thickness of the membrane skeletal layer. When the 80 kD protein was depleted from the reassembly mixture by affinity chromatography using Sepharose-bound monoclonal antibodies, the amount of 86 kD protein bound was significantly reduced, suggesting a dependance of 86 kD protein on 80 kD binding. A urea soluble fraction enriched in the 80 and 86 kD proteins was added to alkali-stripped membranes and 170 Å filaments were formed perpendicularly to the membrane surface. From the sum of these experiments we suggest that a) the native amorphous membrane skeleton ofEuglena may consist of a framework of 80 and 86 kD filaments arranged in a brush-like layer, b) the framework can direct plasma membrane organization, but once determined, membrane form remains stable to urea and trypsin but not to alkali, and c) new surface growth can in theory occur as an expansion of the brush-like layer by direct intercalation of filaments enriched in or consisting wholly of 80 and 86 kD proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 181 (1994), S. 283-290 
    ISSN: 1615-6102
    Keywords: Protein kinases ; Protists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The vast preponderance of our understanding of protein kinases comes from studies of mammalian or of other higher eukaryotic systems. A survey of the Wilson reference databank yielded 3,807 citations for protein kinases; only nine of these were reports of protein kinases in protists. It is apparent, nonetheless, that this understudied group offers unique opportunities for resolving the mechanisms by which protein kinases mediate a variety of cellular processes. Moreover, generalities about cofactor requirements (e.g., Ca2+ alone activates many protist protein kinases), substrate specificity, and the nature of the enzymes themselves (monomeric versus dimeric cyclic-nucleotide dependent protein kinases) will certainly need to be modified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...