Skip to main content
Log in

Protein kinases in protists

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The vast preponderance of our understanding of protein kinases comes from studies of mammalian or of other higher eukaryotic systems. A survey of the Wilson reference databank yielded 3,807 citations for protein kinases; only nine of these were reports of protein kinases in protists. It is apparent, nonetheless, that this understudied group offers unique opportunities for resolving the mechanisms by which protein kinases mediate a variety of cellular processes. Moreover, generalities about cofactor requirements (e.g., Ca2+ alone activates many protist protein kinases), substrate specificity, and the nature of the enzymes themselves (monomeric versus dimeric cyclic-nucleotide dependent protein kinases) will certainly need to be modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboagye-Kwarteng T, Ole-Moiyoi OK, Lonsdale-Eccles JD (1991) Phosphorylation differences among proteins of bloodstream developmental stages ofTrypanosoma brucei brucei. Biochem J 275: 7–14

    Google Scholar 

  • Atkinson M, Allen C, Sequeira L (1992) Tyrosine phosphorylation of a membrane protein fromPseudomonas solanacearum. J Bacteriol 174: 4356–4360

    Google Scholar 

  • Bishop JM (1987) The molecular genetics of cancer. Science 235: 305–311

    Google Scholar 

  • Cadena DL, Gill GN (1992) Receptor tyrosine kinases. FASEB J 6: 2332–2337

    Google Scholar 

  • Carré IA, Edmunds LN (1992) cAMP-dependent kinases in the algal flagellateEuglena gracilis. J Biol Chem 267: 2135–2137

    Google Scholar 

  • Cozzone AJ (1988) Protein phosphorylation in prokaryotes. Annu Rev Microbiol 42: 97–125

    Google Scholar 

  • Das S, Saha AK, Mukhopadhyay NK, Glew RH (1986) A cyclic nucleotide-independent protein kinase inLeishmania donovani. Biochem J 240: 641–649

    Google Scholar 

  • Dubreuil RR, Bouck GB (1985) The membrane skeleton of a unicellular organism consists of bridged, articulating strips. J Cell Biol 101: 1884–1896

    Google Scholar 

  • Fantl WJ, Johnson DE, Williams LT (1993) Signalling by receptor tyrosine kinases. Annu Rev Biochem 62: 453–481

    Google Scholar 

  • Featherstone C, Russell P (1991) Fission yeast p107weel mitotic inhibitor is a tyrosine/serine kinase. Nature 349: 808–811

    Google Scholar 

  • Ferrell JE, Martin GS (1989) Thrombin stimulates the activities of multiple previously unidentified protein kinases in platelets. J Biol Chem 264: 20723–20729

    Google Scholar 

  • Galyov EE, Hakansson S, Forsberg A, Wolf-Watz H (1993) A secreted protein kinase ofYersinia pseudotuberculosis is an indispensible virulence determinant. Nature 361: 730–732

    Google Scholar 

  • Geahlen RL, Harrison ML (1990) Protein-tyrosine kinases. In: Kemp BE (ed) Peptides and protein phosphorylation. CRC Press, Boca Raton, pp 239–253

    Google Scholar 

  • Gundersen RE, Nelson DL (1987) A novel Ca2+-dependent protein kinase fromParamecium tetraurelia. J Biol Chem 262: 4602–4609

    Google Scholar 

  • Guo Y-L, Roux SJ (1990) Partial purification and characterization of a Ca2+-dependent protein kinase from the green alga,Dunaliella salina. Plant Physiol 94: 143–150

    Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52

    Google Scholar 

  • Harper JDI, Sanders MA, Salisbury JL (1993) Phosphorylation of nuclear and flagellar basal apparatus proteins during flagellar regeneration inChlamydomonas reinhardtii. J Cell Biol 122: 877–886

    Google Scholar 

  • Hathaway GM, Traugh JA (1982) Casein kinases — multipotential protein kinases. Curr Top Cell Regul 21: 101–127

    Google Scholar 

  • Hennekes H, Matthias P, Weber K, Nigg EA (1993) Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J Cell Biol 120: 1293–1304

    Google Scholar 

  • Hermoso T, Fishelson Z, Becker SI, Hirschberg K, Jaffe CL (1991) Leishmanial protein kinases phosphorylate components of the complement system. EMBO J 10: 4061–4067

    Google Scholar 

  • Hide G, Gray A, Harrison CM, Tait A (1989) Identification of an epidermal growth factor homologue in trypanosomes. Mol Biochem Parasitol 36: 51–60

    Google Scholar 

  • Howard PK, Sefton BM, Firtel RA (1993) Tyrosine phosphorylation of actin inDictyostelium associated with cell shape changes. Science 259: 241–244

    Google Scholar 

  • Hunter T (1987) A thousand and one protein kinases. Cell 50: 823–829

    Google Scholar 

  • Kameshita I, Fujisawa H (1989) A sensitive method for detection of calmodulin-dependent protein kinase II activity in sodium dodecyl sulfate-polyacrylamide gel. Anal Biochem 183: 139–143

    Google Scholar 

  • Keith K, Hide G, Tait A (1990) Characterization of protein kinase activities inTrypanosoma brucei. Mol Biochem Parasitol 43: 107–116

    Google Scholar 

  • Kellie S, Horvarth AR, Elmore MA (1991) Cytoskeletal targets for oncogenic tyrosine kinases. J Cell Sci 99: 207–211

    Google Scholar 

  • Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Xuong N-H et al (1991) Crystal structure of the catalytic subunit of cAMP-dependent protein kinase. Science 253: 407–414

    Google Scholar 

  • Lester DS, Hermoso T, Jaffe CL (1990) Extracellular phosphorylation in the parasite,Leishmania major. Biochim Biophys Acta 1052: 293–298

    Google Scholar 

  • Lin PP-C, Volcani BE (1989) Novel adenosine 3′,5′-cyclic monophosphate dependent protein kinases in a marine diatom. Biochemistry 28: 6624–6631

    Google Scholar 

  • Luck DJL (1984) Genetic and biochemical dissection of the eukaryotic flagellum. J Cell Biol 98: 789–794

    Google Scholar 

  • Luna EJ, Hitt AL (1992) Cytoskeleton-plasma membrane interactions. Science 258: 955–964

    Google Scholar 

  • McCurdy DW, Harmon AC (1992) Phosphorylation of a putative myosin light chain inChara By calcium-dependent protein kinase. Protoplasma 171: 85–88

    Google Scholar 

  • Mann NH, Rippka R, Herdman M (1991) Regulation of protein phosphorylation in the cyanobacteriumAnabaena strain PCC 7120. J Gen Microbiol 137: 331–339

    Google Scholar 

  • Marrs JA, Bouck GB (1992) The two major membrane skeletal proteins (articulins) ofEuglena gracilis define a novel class of cytoskeletal proteins. J Cell Biol 118: 1465–1475

    Google Scholar 

  • Miglietta LAP, Nelson DL (1988) A novel cGMP-dependent protein kinase fromParamecium. J Biol Chem 263: 16096–16105

    Google Scholar 

  • Mische SM, Morrow JS (1988) Post-translational regulation of the erythrocyte cortical cytoskeleton. Protoplasma 145: 167–175

    Google Scholar 

  • Murtaugh TJ, Gilligan DM, Satir BH (1987) Purification of and production of an antibody against a 63,000 Mr stimulus-sensitive phosphoprotein inParamecium. J Biol Chem 262: 15734–15739

    Google Scholar 

  • Mutzel R, Lacombe ML, Simon M-N, deGunsburg J, Vernon M (1987) Cloning and cDNA sequence of the regulatory subunit of cAMP-dependent protein kinase fromDictyostelium discoideum. Proc Natl Acad Sci USA 84: 6–10

    Google Scholar 

  • Norbury C, Nurse P (1992) Animal cell cycles and their control. Annu Rev Biochem 61: 441–47

    Google Scholar 

  • Parsons M, Valentine M, Deans J, Schieven GL, Ledbetter GL (1990) Distinct patterns of tyrosine phosphorylation during the life cycle ofTrypanosoma brucei. Mol Biochem Parasitol 45: 241–248

    Google Scholar 

  • — —, Carter V (1993) Protein kinases in divergent eukaryotes: identification of protein kinase activities regulated during trypanosome development. Proc Natl Acad Sci USA 90: 2656–2660

    Google Scholar 

  • Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71: 359–362

    Google Scholar 

  • Pelech SL, Sanghera JS (1992) Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem Sci 17: 233–238

    Google Scholar 

  • Pinna LA, Meggio F, Marchiori F (1990) Type-2 casein kinases: general properties and substrate specificity. In: Kemp BE (ed) Peptides and protein phosphorylation. CRC Press, Boca Raton, pp 145–169

    Google Scholar 

  • Piperno G, Huang B, Ramanis Z, Luck DJL (1981) Radial spokes ofChlamydomonas flagella: polypeptide composition and phosphorylation of stalk components. J Cell Biol 88: 73–79

    Google Scholar 

  • Roberts DM (1989) Detection of a calcium-activated protein kinase inMougeotia by using synthetic peptide substrates. Plant Physiol 91: 1613–1619

    Google Scholar 

  • Rosiere TK, Marrs JA, Bouck GB (1990) A 39-kDa plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton ofEuglena gracilis. J Cell Biol 110: 1077–1088

    Google Scholar 

  • Satir BH (1989) Signal transduction events associated with exocytosis in ciliates. J Protozool 36: 382–389

    Google Scholar 

  • Segal RA, Luck DJL (1985) Phosphorylation in isolatedChlamydomonas axonemes: a phosphoprotein may mediate the Ca2+-dependent photophobic response. J Cell Biol 101: 1702–1712

    Google Scholar 

  • —, Huang B, Ramanis Z, Luck DJL (1984) Mutant strains ofChlamydomonas reinhardtii that move backwards only. J Cell Biol 98: 2026–2034

    Google Scholar 

  • Son M, Gundersen RE, Nelson DL (1993) A second member of the novel Ca2+-dependent protein kinase family fromParamecium tetraurelia. J Biol Chem 268: 5940–5948

    Google Scholar 

  • Subramanian SV, Satir BH (1992) Carbohydrate cycling in signal transduction: parafusin, a phosphoglycoprotein and possible Ca2+-dependent transducer molecule in exocytosis inParamecium. Proc Natl Acad Sci USA 89: 11297–11301

    Google Scholar 

  • Suzuki T, Williamson RE (1985) Euglenoid movement inEuglena fusca: evidence for sliding between pellicular strips. Protoplasma 124: 137–146

    Google Scholar 

  • Thomas G (1992) MAP kinase by any other name smells just as sweet. Cell 68: 3–6

    Google Scholar 

  • Taylor SS, Knighton DR, Zheng J, Ten Eyck LF, Sowadski JM (1992) Structural framework for the protein kinase family. Annu Rev Cell Biol 8: 429–462

    Google Scholar 

  • Tuazon PT, Traugh JA (1991) Casein kinase I and II — multipotential serine protein kinases: structure, function and regulation. Adv Second Messenger Phosphoprotein Res 23: 123–164

    Google Scholar 

  • Wheeler-Alm E, Shapiro SZ (1992) Evidence of tyrosine kinase activity in the protozoan parasiteTrypanosoma brucei. J Protozool 39: 413–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazio, M.J., Marrs, J.A. & Bouck, G.B. Protein kinases in protists. Protoplasma 181, 283–290 (1994). https://doi.org/10.1007/BF01666402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666402

Keywords

Navigation