ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • Copernicus Publications (EGU)  (4)
  • Society of Economic Geologists  (4)
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 13 . pp. 817-825.
    Publication Date: 2019-02-01
    Description: Bulk aerosol samples collected during cruise M91 of FS Meteor off the coast of Peru in December 2012 were analysed for their soluble trace metal (Fe, Al, Mn, Ti, Zn, V, Ni, Cu, Co, Cd, Pb, Th) and major ion (including NO3− and NH4+) content. These data are among the first recorded for trace metals in this relatively poorly studied region of the global marine atmosphere. To the north of ∼ 13° S, the concentrations of several elements (Fe, Ti, Zn, V, Ni, Pb) appear to be related to distance from the coast. At the south of the transect (∼ 15–16° S), elevated concentrations of Fe, Cu, Co and Ni were observed. These may be related to the activities of the large smelting facilities in the south of Peru or northern Chile. Calculated dry deposition fluxes (3370–17 800 and 16–107 nmol m−2 d−1 for inorganic nitrogen and soluble Fe respectively) indicated that atmospheric input to the waters of the Peru upwelling system contains an excess of Fe over N, with respect to phytoplankton requirements. This may be significant as primary production in these waters has been reported to be limited by Fe availability, but atmospheric deposition is unlikely to be the dominant source of Fe to the system
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-05
    Description: Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient–low-chlorophyll waters. Similarly, an increase of Mn uptake under Fe-depleted conditions may have caused the highest depletion of Mn relative to P in the surface waters of the Weddell Gyre. In addition, a cellular Mn-transport channel of Cd was possibly activated in the Weddell Gyre, which in turn may have yielded depletion of both Mn and Cd in these surface waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-30
    Description: The Monowai volcanic center is located at the midpoint along the ~2,530-km-long Tonga-Kermadec arc system. The Monowai volcanic center is comprised of a large elongate caldera (Monowai caldera area ~35 km2; depth to caldera floor 1,590 m), which has formed within an older caldera some 84 km2 in area. To the south of this nested caldera system is a large composite volcano, Monowai cone, which rises to within ~100 m of the sea surface and which has been volcanically active for the past several decades. Mafic volcanic rocks dominate the Monowai volcanic center; basalts are the most common rock type recovered from the cone, whereas basaltic andesites are common within the caldera. Hydrothermal plume mapping has shown at least three major hydrothermal systems associated with the caldera and cone: (1) the summit of the cone, (2) low-temperature venting (〈60°C; Mussel Ridge) on the southwestern wall of the caldera, and (3) a deeper caldera source with higher temperature venting that has yet to be observed. The cone summit plume shows large anomalies in pH (a shift of −2.00 pH units) and δ3He (≤358%), and noticeable H2S (up to 32 μm), and CH4 (up to 900 nm). The summit plume is also metal rich, with elevated total dissolvable Fe (TDFe up to 4,200 nm), TDMn (up to 412 nm), and TDFe/TDMn (up to 20.4). Particulate samples have elevated Fe, Si, Al, and Ti consistent with addition to the hydrothermal fluid from acidic water-rock reaction. Plumes extending from ~1,000- to 1,400-m depth provide evidence for a major hydrothermal vent system in the caldera. The caldera plume has lower values for TDFe and TDMn, although some samples show higher TDMn concentrations than the cone summit plume; caldera plume samples are also relatively gas poor (i.e., no H2S detected, pH shift of −0.06 pH units, CH4 concentrations up to 26 nm). The composition of the hydrothermal plumes in the caldera have higher metal contents than the sampled vent fluids along Mussel Ridge, requiring that the source of the caldera plumes is at greater depth and likely of higher temperature. Minor plumes detected as light scattering anomalies but with no 3He anomalies down the northern flank of the Monowai caldera most likely represent remobilization of volcanic debris from the volcano flanks. We believe the Monowai volcanic center is host to a robust magmatic-hydrothermal system, with significant differences in the style and composition of venting at the cone and caldera sites. At the cone, the large shifts in pH, very high δ3He% values, elevated TDFe and TDFe/TDMn, and the H2S- and CH4-rich nature of the plume fluids, together with elevated Ti, P, V, S, and Al in hydrothermal particulates, indicates significant magmatic volatile ± metal contributions in the hydrothermal system coupled with aggressive acidic water-rock interaction. By contrast, the caldera has low TDFe/TDMn in hydrothermal plumes; however, elevated Al and Ti contents in caldera particulate samples, combined with the presence of alunite, pyrophyllite, sulfide minerals, and native sulfur in samples from Mussel Ridge suggest past, and perhaps recent, acid volatile-rich venting and active Fe sulfide formation in the subsurface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: In this study we report diapycnal diffusive fluxes of dissolved iron (dFe), dissolved aluminium (dAl) and the major macronutrients to the surface waters of the North Atlantic subpolar gyre. Turbulent diffusivities at the base of the summer mixed layer ranged from 0.01 to 0.5 (median 0.07) cm2 s−1 and daily macronutrient fluxes into the surface mixed layer typically represented 〈 0.5% of integrated mixed layer inventories, although fluxes were highly variable. Elevated nutrient fluxes of up to 4% of mixed layer inventories were identified on the Greenland Shelf, where integrated nutrient pools were lowest due to localised shoaling of the mixed layer. Diffusive fluxes of dFe and dAl were typically 〈0.1% of mixed layer inventories but were also highly variable between stations. Approximations of daily phytoplankton nutrient and Fe uptake indicate that the diffusive flux may at best represent 〈10% of phytoplankton macronutrient uptake, and only 1% of daily phytoplankton Fe uptake. The daily turbulent diffusive flux of dFe was comparable in magnitude to coincident estimates of aeolian Fe supply but despite shallower than normal convective mixing in winter 2010 the diffusive supply was 22 and 59 times smaller than the annual convective supply of Fe to the Irminger and Iceland basins respectively. The general picture obtained from this study is one of small magnitude diffusive nutrient and Fe fluxes to the subpolar North Atlantic during the period of annual nutrient minima and indicates that the diffusive supply mechanism is unlikely to alleviate the recently identified presence of seasonal iron limitation within the North Atlantic subpolar gyre; a condition exacerbated by low dFe:NO3− ratios in subsurface source waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-08
    Description: Brothers volcano, which is part of the active Kermadec arc, northeast of New Zealand, forms an elongate edifice 13 km long by 8 km across that strikes northwest-southeast. The volcano has a caldera with a basal diameter of ~3 km and a floor at 1,850 m below sea level, surrounded by 290- to 530-m-high walls. A volcanic cone of dacite rises 350 m from the caldera floor and partially coalesces with the southern caldera wall. Three hydrothermal sites have been located: on the northwest caldera wall, on the southeast caldera wall, and on the dacite cone. Multiple hydrothermal plumes rise ~750 m through the water column upward from the caldera floor, originating from the northwest caldera walls and atop the cone, itself host to three separate vent fields (summit, upper flank, northeast flank). In 1999, the cone site had plumes with relatively high concentrations of gas with a ΔpH of −0.27 relative to seawater (proxy for CO2 + S gases), dissolved H2S up to 4,250 nM, high concentrations of particulate Cu (up to 3.4 nM), total dissolvable Fe (up to 4,720 nM), total dissolvable Mn (up to 260 nM) and Fe/Mn values of 4.4 to 18.2. By 2002, plumes from the summit vent field had much lower particulate Cu (0.3 nM), total dissolvable Fe (175 nM), and Fe/Mn values of 0.8 but similar ΔpH (−0.22) and higher H2S (7,000 nM). The 1999 plume results are consistent with a magmatic fluid component with the concentration of Fe suggesting direct exsolution of a liquid brine, whereas the much lower concentrations of metals but higher overall gas contents in the 2002 plumes likely reflect subsea-floor phase separation. Plumes above the northwest caldera site are chemically distinct, and their compositions have not changed over the same 3-year interval. They have less CO2 (ΔpH of −0.09), no detectable H2S, total dissolved Fe of 955 nM, total dissolved Mn of 150 nM, and Fe/Mn of 6.4. An overall increase in 3He/4He values in the plumes from R/RA = 6.1 in 1999 to 7.2 in 2002 is further consistent with a magmatic pulse perturbing the system. The northwest caldera site is host to at least two large areas (~600 m by at least 50 m) of chimneys and sub-cropping massive sulfide. One deposit is partially buried by sediment near the caldera rim at ~1,450 m, whereas the other crops out along narrow, fault-bounded ledges between ~1,600 and 1,650 m. Camera tows imaged active 1- to 2-m-high black smoker chimneys in the deeper zone together with numerous 1- to 5-m-high inactive spires, abundant sulfide talus, partially buried massive sulfides, and hydrothermally altered volcanic rocks. 210Pb/226Ra dating of one chimney gives an age of 27 ± 6 years; 226Ra/Ba dating of other mineralization indicates ages up to 1,200 years. Formation temperatures derived from Δ34Ssulfate-sulfide mineral pairs are 245° to 295° for the northwest caldera site, 225° to 260°C for the southeast caldera and ~260° to 305°C for the cone. Fluid inclusion gas data suggest subsea-floor phase separation occurred at the northwest caldera site. Alteration minerals identified include silicates, silica polymorphs, sulfates, sulfides, Fe and Mn oxide and/or oxyhydroxides, and native sulfur, which are consistent with precipitation at a range of temperatures from fluids of different compositions. An advanced argillic assemblage of illite + amorphous silica + natroalunite + pyrite + native S at the cone site, the occurrence of chalcocite + covellite + bornite + iss + chalcopyrite + pyrite in sulfide samples from the southeast caldera site, and veins of enargite in a rhyodacitic sample from the northwest caldera site are indicative of high-sulfidation conditions similar to those of subaerial magmatic-hydrothermal systems. The northwest caldera vent site is a long-lived hydrothermal system that is today dominated by evolved sea-water but has had episodic injections of magmatic fluid. The southeast caldera site represents the main upflow of a relatively well established magmatic-hydrothermal system on the sea floor where sulfide-rich chimneys are extant. The cone site is a nascent magmatic-hydrothermal system where crack zones localize upwelling acidic waters. Each of these different vent sites represents diverse parts of an evolving hydrothermal system, any one of which may be typical of submarine volcanic arcs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-25
    Description: Clark volcano of the Kermadec arc, northeast of New Zealand, is a large stratovolcano comprised of two coalescing volcanic cones; an apparently younger, more coherent, twin-peaked edifice to the northwest and a relatively older, more degraded and tectonized cone to the southeast. High-resolution water column surveys show an active hydrothermal system at the summit of the NW cone largely along a ridge spur connecting the two peaks, with activity also noted at the head of scarps related to sector collapse. Clark is the only known cone volcano along the Kermadec arc to host sulfide mineralization. Volcano-scale gravity and magnetic surveys over Clark show that it is highly magnetized, and that a strong gravity gradient exists between the two edifices. Modeling suggests that a crustal-scale fault lies between these two edifices, with thinner crust beneath the NW cone. Locations of regional earthquake epicenters show a southwest-northeast trend bisecting the two Clark cones, striking northeastward into Tangaroa volcano. Detailed mapping of magnetics above the NW cone summit shows a highly magnetized “ring structure” ~350 m below the summit that is not apparent in the bathymetry; we believe this structure represents the top of a caldera. Oblate zones of low (weak) magnetization caused by hydrothermal fluid upflow, here termed “burn holes,” form a pattern in the regional magnetization resembling Swiss cheese. Presumably older burn holes occupy the inner margin of the ring structure and show no signs of hydrothermal activity, while younger burn holes are coincident with active venting on the summit. A combination of mineralogy, geochemistry, and seafloor mapping of the NW cone shows that hydrothermal activity today is largely manifest by widespread diffuse venting, with temperatures ranging between 56° and 106°C. Numerous, small (≤30 cm high) chimneys populate the summit area, with one site host to the ~7-m-tall “Twin Towers” chimneys with maximum vent fluid temperatures of 221°C (pH 4.9), consistent with δ34Sanhydrite-pyrite values indicating formation temperatures of ~228° to 249°C. Mineralization is dominated by pyrite-marcasite-barite-anhydrite. Radiometric dating using the 228Ra/226Ra and 226Ra/Ba methods shows active chimneys to be 〈20 with most 〈2 years old. However, the chimneys at Clark show evidence for mixing with, and remobilizing of, barite as old as 19,000 years. This is consistent with Nd and Sr isotope compositions of Clark chimney and sulfate crust samples that indicate mixing of ~40% seawater with a vent fluid derived from low K lavas. Similarly, REE data show the hydrothermal fluids have interacted with a plagioclase-rich source rock. A holistic approach to the study of the Clark hydrothermal system has revealed a two-stage process whereby a caldera-forming volcanic event preceded a later cone-building event. This ensured a protracted (at least 20 ka yrs) history of hydrothermal activity and associated mineral deposition. If we assume at least 200-m-high walls for the postulated (buried) caldera, then hydrothermal fluids would have exited the seafloor 20 ka years ago at least 550 m deeper than they do today, with fluid discharge temperatures potentially much hotter (~350°C). Subsequent to caldera infilling, relatively porous volcaniclastic and other units making up the cone acted as large-scale filters, enabling ascending hydrothermal fluids to boil and mix with seawater subseafloor, effectively removing the metals (including remobilized Cu) in solution before they reached the seafloor. This has implications for estimates for the metal inventory of seafloor hydrothermal systems pertaining to arc hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-06
    Description: Sea-floor imagery, volcanic rock, massive sulfide, and hydrothermal plume samples (δ3He, pH, dissolved Fe and Mn, and particulate chemistry) have been collected from the Rumble II West volcano, southern Kermadec arc, New Zealand. Rumble II West is a caldera volcano with an ∼3-km-diameter summit depression bounded by ring faults with a resurgent central cone. Rocks recovered to date are predominantly mafic in composition (i.e., basalt to basaltic andesite) with volumetrically lesser intermediate rocks (i.e., andesite). On the basis of its size, geometry, volcanic products, and composition, Rumble II West can be classified as a mafic caldera volcano. Rumble II West has a weak hydrothermal plume signature characterized by a small but detectable δ3He anomaly (25%). Time-series light scattering data though, obtained from vertical casts and tow-yos, do show that hydrothermal activity has increased in intensity between 1999 and 2011. Massive sulfides recovered from the eastern caldera wall and eastern flank of the central cone are primarily comprised of barite and chalcopyrite, with lesser sphalerite, pyrite, and traces of galena. The weak hydrothermal plume signal indicates that the volcano is in a volcanic-hydrothermal quiescent stage compared to other volcanoes along the southern Kermadec arc, although the preponderance of barite with massive sulfide mineralization indicates higher temperature venting in the past. Of the volcanoes along the Kermadec-Tonga arc known to host massive sulfides (i.e., Clark, Rumble II West, Brothers, Monowai, Volcano 19, and Volcano 1), the majority (five out of six) are dominantly mafic in composition and all but one of these mafic volcanoes form moderate-size to large calderas. To date, mafic calderas have been largely ignored as hosts to sea-floor massive sulfide deposits. That 75% of the presently known massive sulfide-bearing calderas along the arc are mafic in composition (the dacitic Brothers volcano is the exception) has important implications for sea-floor massive sulfide mineral exploration in the modern oceans and ancient rock record on land.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-04
    Description: Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...