ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (10)
  • Sears Foundation of Marine Research  (3)
  • 1
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 63 (2). pp. 335-358.
    Publication Date: 2018-03-21
    Description: A marine ecosystem model, that had previously been calibrated in a one-dimensional (1D) mode against observations at three time-series and process-study sites simultaneously, is coupled to a three-dimensional (3D) circulation model of the North and Equatorial Atlantic. Compared to an experiment with a previously employed subjectively tuned ecosystem model, the new 3D-model does not only reduce the model-data misfit at those locations at which observations entered the 1D optimization procedure, but also at an oligotrophic site in the subtropics that had not been considered in the 1D calibration. Basin-scale gridded climatological data sets of nitrate, surface chlorophyll, and satellite-derived primary production also reveal a generally lower model-data misfit for the optimized model. The most significant improvement is found in terms of simulated primary production: on average, primary production is about 2.5 times higher in the optimized model which primarily results from the inclusion of a phytoplankton recycling pathway back to dissolved inorganic nitrogen. This recycling pathway also allows for a successful reproduction of nonvanishing surface nitrate concentrations over large parts of the subpolar North Atlantic. Apart from primary production, the parameter optimization reduces root-mean-square misfits by merely 10–25% and remaining misfits are still much larger than observational error estimates. These residual misfits can be attributed both to errors in the physical model component and to errors in the structure of the ecosystem model, which an objective estimation of ecosystem model parameters by data assimilation alone cannot resolve.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 (7). pp. 1857-1882.
    Publication Date: 2020-02-06
    Description: The effect of ocean acidification on growth and calcification of the marine algae Emiliania huxleyi was investigated in a series of mesocosm experiments where enclosed water volumes that comprised a natural plankton community were exposed to different carbon dioxide (CO2) concentrations. Calcification rates observed during those experiments were found to be highly variable, even among replicate mesocosms that were subject to similar CO2 perturbations. Here, data from an ocean acidification mesocosm experiment are reanalysed with an optimality-based dynamical plankton model. According to our model approach, cellular calcite formation is sensitive to variations in CO2 at the organism level. We investigate the temporal changes and variability in observations, with a focus on resolving observed differences in total alkalinity and particulate inorganic carbon (PIC). We explore how much of the variability in the data can be explained by variations of the initial conditions and by the level of CO2 perturbation. Nine mesocosms of one experiment were sorted into three groups of high, medium, and low calcification rates and analysed separately. The spread of the three optimised ensemble model solutions captures most of the observed variability. Our results show that small variations in initial abundance of coccolithophores and the prevailing physiological acclimation states generate differences in calcification that are larger than those induced by ocean acidification. Accordingly, large deviations between optimal mass flux estimates of carbon and of nitrogen are identified even between mesocosms that were subject to similar ocean acidification conditions. With our model-based data analysis we document how an ocean acidification response signal in calcification can be disentangled from the observed variability in PIC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-28
    Description: This study relates the performance of an optimized one-dimensional ecosystem model to observations at three sites in the North Atlantic Ocean: the Bermuda Atlantic Time Series Study (BATS, 31N 64W), the location of the North Atlantic Bloom Experiment (NABE, 47N 20W), and Ocean Weather Ship INDIA (OWS-INDIA, 59N 19W). The ecosystem model is based on nitrogen and resolves dissolved inorganic nitrogen (N), phytoplankton (P), zooplankton (Z) and detritus (D), therefore called the NPZD-model. Physical forcing, such as temperature and eddy diffusivities are taken from an eddy-permitting general circulation model of the North Atlantic Ocean, covering a period from 1989 through 1993. When an optimized parameter set is applied, the recycling of organic nitrogen becomes significantly enhanced, compared to previously published results of the NPZD model. The optimized model yields improved estimates of the annual ratio of regenerated to total primary production (f-ratio). The annual f-ratios are 0.09, 0.31, and 0.42 for the locations of BATS, NABE, and OWS-INDIA, respectively. Nevertheless, three major model deficiencies are identified. Most conspicuous are systematic discrepancies between measured 14C-fixation rates and modeled primary production under nutrient depleted conditions. This error is primarily attributed to the assumption of a constant carbon-to-nitrogen ratio for nutrient acquisition. Secondly, the initial period of the modeled phytoplankton blooms is hardly tracked by the model. That particular model deficiency becomes most apparent at the OWS-INDIA site. The interplay between algal growth and short-term alterations in stratification and mixing is believed to be insufficiently resolved by the physical model. Eventually, the model's representation of the vertical nitrogen export appears to be too simple in order to match, at the same time, remineralization within the upper 300 meters and the biomass export to greater depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-20
    Description: During phytoplankton growth a fraction of dissolved inorganic carbon (DIC) assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC), which can be transformed into extracellular particulate organic carbon (POC). A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC) that form from dissolved polysaccharides (PCHO). The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN), called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N) ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON) remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM). The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is applicable for large-scale biogeochemical simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: To describe the underlying processes involved in oceanic plankton dynamics is crucial for the determination of energy and mass flux through an ecosystem and for the estimation of biogeochemical element cycling. Many planktonic ecosystem models were developed to resolve major processes so that flux estimates can be derived from numerical simulations. These results depend on the type and number of parameterizations incorporated as model equations. Furthermore, the values assigned to respective parameters specify a model's solution. Representative model results are those that can explain data; therefore, data assimilation methods are utilized to yield optimal estimates of parameter values while fitting model results to match data. Central difficulties are (1) planktonic ecosystem models are imperfect and (2) data are often too sparse to constrain all model parameters. In this review we explore how problems in parameter identification are approached in marine planktonic ecosystem modelling. We provide background information about model uncertainties and estimation methods, and how these are considered for assessing misfits between observations and model results. We explain differences in evaluating uncertainties in parameter estimation, thereby also discussing issues of parameter identifiability. Aspects of model complexity are addressed and we describe how results from cross-validation studies provide much insight in this respect. Moreover, approaches are discussed that consider time- and space-dependent parameter values. We further discuss the use of dynamical/statistical emulator approaches, and we elucidate issues of parameter identification in global biogeochemical models. Our review discloses many facets of parameter identification, as we found many commonalities between the objectives of different approaches, but scientific insight differed between studies. To learn more from results of planktonic ecosystem models we recommend finding a good balance in the level of sophistication between mechanistic modelling and statistical data assimilation treatment for parameter estimation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The influence of seawater carbon dioxide (CO2) concentration on the size distribution of suspended particles (2–60 μm) and on phytoplankton abundance was investigated during a mesocosm experiment at the large scale facility (LFS) in Bergen, Norway, in the frame of the Pelagic Ecosystem CO2 Enrichment study (PeECE II). In nine outdoor enclosures the partial pressure of CO2 in seawater was modified by an aeration system to simulate past (~190 μatm CO2), present (~370 μatm CO2) and future (~700 μatm CO2) CO2 conditions in triplicates. Due to the initial addition of inorganic nutrients, phytoplankton blooms developed in all mesocosms and were monitored over a period of 19 days. Seawater samples were collected daily for analysing the abundance of suspended particles and phytoplankton with the Coulter Counter and with Flow Cytometry, respectively. During the bloom period, the abundance of small particles (〈4 μm) significantly increased at past, and decreased at future CO2 levels. At that time, a direct relationship between the total-surface-to-total-volume ratio of suspended particles and DIC concentration was determined for all mesocosms. Significant changes with respect to the CO2 treatment were also observed in the phytoplankton community structure. While some populations such as diatoms seemed to be insensitive to the CO2 treatment, others like Micromonas spp. increased with CO2, or showed maximum abundance at present day CO2 (i.e. Emiliania huxleyi). The strongest response to CO2 was observed in the abundance of small autotrophic nano-plankton that strongly increased during the bloom in the past CO2 mesocosms. Together, changes in particle size distribution and phytoplankton community indicate a complex interplay between the ability of the cells to physiologically respond to changes in CO2 and size selection. Size of cells is of general importance for a variety of processes in marine systems such as diffusion-limited uptake of substrates, resource allocation, predator-prey interaction, and gravitational settling. The observed changes in particle size distribution are therefore discussed with respect to biogeochemical cycling and ecosystem functioning.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 61 (6). pp. 765-793.
    Publication Date: 2017-11-28
    Description: An optimization experiment is performed with a vertically resolved, nitrogen-based ecosystem model, composed of four state variables (NPZD-model): dissolved inorganic nitrogen (N), phytoplankton (P), herbivorous zooplankton (Z) and detritus (D). Parameter values of the NPZD-model are optimized while assimilating observations at three locations in the North Atlantic simultaneously, namely at the sites of the Bermuda Atlantic Time-Series Study (BATS; 31N 64W), of the North Atlantic Bloom Experiment (NABE; 47N 20W), and of Ocean Weather Ship-India (OWS-INDIA; 59N 19W). A method is described for a simultaneous optimization which effectively merges different types of observational data at distinct sites in the ocean. A micro-genetic algorithm is applied for the minimization of a weighted least square misfit function. The optimal parameter estimates are shown to represent a compromise among local parameter estimates that would be obtained from single-site optimizations at the individual locations. The optimization yields a high estimate of the initial slope parameter of photosynthesis (alpha), which is shown to be necessary to match the initial phases of phytoplankton growth. The estimate of alpha is well constrained by chlorophyll observations at the BATS and OWS-INDIA sites and likely compensates for a deficiency in the parameterization of light-limited growth. The optimization also points toward an enhanced recycling of organic nitrogen which is perceived from a high estimate for the phytoplankton mortality/excretion rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 (7). pp. 1883-1901.
    Publication Date: 2021-11-15
    Description: Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard deviation typically found in the replicates of the same CO2 treatment level. In experiments with multiple unresolved factors and a sub-optimal number of replicates, post-processing statistical inference tools might fail to detect an effect that is present. We propose that in such cases, data-based model analyses might be suitable tools to unearth potential responses to the treatment and identify the uncertainties that could produce the observed variability. As test cases, we used data from two independent mesocosm experiments. Both experiments showed high standard deviations and, according to statistical inference tools, biomass appeared insensitive to changing CO2 conditions. Conversely, our simulations showed earlier and more intense phytoplankton blooms in modeled replicates at high CO2 concentrations and suggested that uncertainties in average cell size, phytoplankton biomass losses, and initial nutrient concentration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimated the thresholds below which uncertainties do not escalate to high variability. This information might help in designing future mesocosm experiments and interpreting controversial results on the effect of acidification or other pressures on ecosystem functions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Controlled manipulation of environmental conditions within large enclosures in the ocean, so-called pelagic mesocosms, has become a standard method to explore potential responses of marine plankton communities to anthropogenic change. Among the challenges of interpreting mesocosm data is the often uncertain role of vertical mixing, which usually is not observed directly. To account for mixing nonetheless, two pragmatic assumptions are common: either that the water column is homogeneously mixed or that it is divided into two water bodies with a horizontal barrier inhibiting turbulent exchange. In this study, we present a model-based reanalysis of vertical turbulent diffusion in the mesocosm experiments PeECE III and KOSMOS 2013. Our diffusivity estimates indicate intermittent mixing events along with stagnating periods and yield simulated temperature and salinity profiles that are consistent with the observations. Here, we provide the respective diffusivities as a comprehensive data product in the Network Common Data Format (NetCDF). This data product will help to guide forthcoming model studies that aim at deepening our understanding of biogeochemical processes in the PeECE III and KOSMOS 2013 mesocosms, such as the CO2-related changes in marine carbon export. In addition, we make our model code available, providing an adjustable tool to simulate vertical mixing in any other pelagic mesocosm. The data product and the model code are available at https://doi.org/10.1594/PANGAEA.905311 (Mathesius et al., 2019).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: We analyse 400 perturbed-parameter simulations for two configurations of an optimality-based plankton-ecosystem model (OPEM), implemented in the University of Victoria Earth-System Climate Model (UVic-ESCM), using a Latin-Hypercube sampling method for setting up the parameter ensemble. A likelihood-based metric is introduced for model assessment and selection of the model solutions closest to observed distributions of NO3−, PO43−, O2, and surface chlorophyll a concentrations. According to our metric the optimal model solutions comprise low rates of global N2 fixation and denitrification. These two rate estimates turned out to be poorly constrained by the data. For identifying the “best” model solutions we therefore also consider the model’s ability to represent current estimates of water-column denitrification. We employ our ensemble of model solutions in a sensitivity analysis to gain insights into the importance and role of individual model parameters as well as correlations between various biogeochemical processes and tracers, such as POC export and the NO3− inventory. Global O2 varies by a factor of two and NO3− by more than a factor of six among all simulations. Remineralisation rate is the most important parameter for O2, which is also affected by the subsistence N quota of ordinary phytoplankton (QN0,phy) and zooplankton maximum specific ingestion rate. QN0,phy is revealed as a major determinant of the oceanic NO3− pool. This indicates that unraveling the driving forces of variations in phytoplankton physiology and elemental stoichiometry, which are tightly linked via QN0,phy, is a prerequisite for understanding the marine nitrogen inventory.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...