ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2017-04-06
    Description: Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard deviation typically found in the replicates of the same CO2 treatment level. In experiments with multiple unresolved factors and a sub-optimal number of replicates, post-processing statistical inference tools might fail to detect an effect that is present. We propose that in such cases, data-based model analyses might be suitable tools to unearth potential responses to the treatment and identify the uncertainties that could produce the observed variability. As test cases, we used data from two independent mesocosm experiments. Both experiments showed high standard deviations and, according to statistical inference tools, biomass appeared insensitive to changing CO2 conditions. Conversely, our simulations showed earlier and more intense phytoplankton blooms in modeled replicates at high CO2 concentrations and suggested that uncertainties in average cell size, phytoplankton biomass losses, and initial nutrient concentration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimated the thresholds below which uncertainties do not escalate to high variability. This information might help in designing future mesocosm experiments and interpreting controversial results on the effect of acidification or other pressures on ecosystem functions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-08
    Description: Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard deviation typically found in the distribution of the replicates exposed to the same treatment. In experiments with multiple unresolved factors and a suboptimal number of replicates, post-processing statistical inference tools may fail to detect an effect. In such cases, model-based data analyses are suitable tools to unearth potential responses to the treatment and to identify which uncertainties may give rise to the observed divergences. As test cases, we use data showing high variability from two independent mesocosm experiments, where, according to statistical inference tools, biomass appeared insensitive to changing CO2 conditions. Our simulations, in stead, show earlier and more intense phytoplankton blooms in modeled replicates at high CO2 concentrations and suggest that uncertainties in average cell size, phytoplankton biomass losses and initial nutrient concentration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimate the thresholds below which uncertainties do not escalate into high variability. This information may help to interpret controversial results about acidification and to design future mesocosm experiments.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 68 pp
    Publication Date: 2019-02-01
    Description: Observations from different mesocosms exposed to the same treatment typically show variability that hinders the detection of potential treatments effects. To unearth relevant sources of variability, I developed and performed a model­-based data analysis that simulates uncertainty propagation. I described how the observed divergence in the outcomes can be due to the amplification of differences in experimentally unresolved ecological factors within same treatment replicates. Three independent ocean acidification experiments on the response of phytoplankton to high CO2 concentrations in aquatic environments were used as tests cases. I first simulated the dynamics of the mean phytoplankton biomass in each treatment and detected acidification effects on the timing and intensity of the bloom in spite of the so far negative results obtained by statistical inference tools. By using the mean dynamics as reference for the uncertainty quantification, I showed that differences among replicates in parameters related to initial i) plankton community composition and ii) nutrient concentration can generate higher biomass variability than the response that can be attributed to the effect of elevated levels of CO2. I calculated confidence intervals for parameters and initial conditions. They can serve as estimation of the mesocosms tolerance thresholds below which uncertainties do not escalate into high outcomes variability. This information can improve the detection of treatment effects in next generation experimental designs and contributes to the ongoing discussion on the interpretation of controversial results in mesocosm experiments.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Talk] In: 1. Workshop on Trait-based approaches to Ocean Life, 26.-28.08.2013, Kopenhagen, Danmark .
    Publication Date: 2016-06-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Talk] In: Understanding and Interpreting Uncertainty - Interdisziplinary Conference of Young Earth System Scientists, 22.-25.09.2013, Hamburg, Germany .
    Publication Date: 2016-06-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 (7). pp. 1883-1901.
    Publication Date: 2021-11-15
    Description: Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard deviation typically found in the replicates of the same CO2 treatment level. In experiments with multiple unresolved factors and a sub-optimal number of replicates, post-processing statistical inference tools might fail to detect an effect that is present. We propose that in such cases, data-based model analyses might be suitable tools to unearth potential responses to the treatment and identify the uncertainties that could produce the observed variability. As test cases, we used data from two independent mesocosm experiments. Both experiments showed high standard deviations and, according to statistical inference tools, biomass appeared insensitive to changing CO2 conditions. Conversely, our simulations showed earlier and more intense phytoplankton blooms in modeled replicates at high CO2 concentrations and suggested that uncertainties in average cell size, phytoplankton biomass losses, and initial nutrient concentration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimated the thresholds below which uncertainties do not escalate to high variability. This information might help in designing future mesocosm experiments and interpreting controversial results on the effect of acidification or other pressures on ecosystem functions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...