ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (3)
  • 2015-2019  (3)
  • 2016  (3)
Collection
Years
  • 2015-2019  (3)
Year
  • 1
    Publication Date: 2016-01-29
    Description: Currently, there are 24 black hole (BH) X-ray binary systems that have been dynamically confirmed in the Galaxy. Most of them are low-mass X-ray binaries (LMXBs) comprised of a stellar-mass BH and a low-mass donor star. Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. In this paper, we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency and the initial mass distributions of the companion stars. We obtain the birthrate and the distributions of the donor mass, effective temperature and orbital period for the BH LMXBs in each case. By comparing the calculated results with the observations, we put useful constraints on the aforementioned parameters. In particular, we show that it is possible to form BH LMXBs with the standard CE scenario if most BHs are born through failed supernovae.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-28
    Description: We use the evolutionary population synthesis method to investigate the statistical properties of the wind-fed neutron-star (NS) compact ( P orb 〈 10 d) high-mass X-ray binaries (HMXBs) in our Galaxy, based on different spin-down models. Model 1 assumes that the surrounding material is treated as forming a quasi-static atmosphere. Model 2 assumes that the characteristic velocity of matter and the typical Alfvén velocity of material in the magnetospheric boundary layer are comparable to the sound speed in the external medium. We find that the spin-down rate in the supersonic propeller phase in either model 1 or model 2 is too low to produce the observed number of compact HMXBs. Model 3 assumes that the infalling material is ejected with the corotation velocity at the magnetospheric radius when the magnetospheric radius is larger than the corotation radius. Model 4 uses simple integration of the magnetic torque over the magnetosphere. Both models 3 and 4 have a larger spin down rate than that given by model 1 or 2. We also find that models 3 and 4 can predict a reasonable number of observed wind-fed NS compact HMXBs. By comparing our calculated results with the observed particular distributions of wind-fed NS compact HMXBs in a P s versus P orb diagram, we find that the subsonic propeller phase may not exist at all. However, the spin-down rates in models 3 and 4 both seem reasonable to produce the observed distribution of wind-fed NS compact HMXBs in the P s versus P orb diagram. We cannot find which spin-down rate seems more reasonable from our calculations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-13
    Description: We present a timing analysis of two Rossi X-ray Timing Explorer observations of the microquasar GRS 1915+105 during the heartbeat state. The phase–frequency–power maps show that the intermediate-frequency aperiodic X-ray variability weakens as the source softens in the slow rise phase, and when the quasi-periodic oscillation disappears in the rise phase of the pulse of the double-peaked class, its sub-harmonic is still present with a hard phase lag. In the slow rise phase, the energy–frequency–power maps show that most of the aperiodic variability is produced in the corona, and may also induce the aperiodic variability observed at low energies from an accretion disc, which is further supported by the soft phase lag especially in the intermediate-frequency range (with a time delay up to 20 ms). In the rise phase of the pulse, the low-frequency aperiodic variability is enhanced significantly and there is a prominent hard lag (with a time delay up to 50 ms), indicating that the variability is induced by extension of the disc towards small radii as implied by the increase in flux and propagates into the corona. However, during the hard pulse of the double-peaked class, the variability shows no significant lag, which may be attributed to an optically thick corona. These timing results are generally consistent with the spectral results presented by Neilsen, Remillard & Lee which indicated that the slow rise phase corresponds to a local Eddington limit and the rise phase of the pulse corresponds to a radiation pressure instability in the disc.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...