ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (11)
  • Structure, structural phase transitions, mechanical properties, defects
  • Nature Publishing Group (NPG)  (11)
  • 1
    Publication Date: 2015-01-09
    Description: Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall alpha-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast alpha-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of alpha-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuskin, Fiona -- Lowe, Elisabeth C -- Temple, Max J -- Zhu, Yanping -- Cameron, Elizabeth A -- Pudlo, Nicholas A -- Porter, Nathan T -- Urs, Karthik -- Thompson, Andrew J -- Cartmell, Alan -- Rogowski, Artur -- Hamilton, Brian S -- Chen, Rui -- Tolbert, Thomas J -- Piens, Kathleen -- Bracke, Debby -- Vervecken, Wouter -- Hakki, Zalihe -- Speciale, Gaetano -- Munoz-Munoz, Jose L -- Day, Andrew -- Pena, Maria J -- McLean, Richard -- Suits, Michael D -- Boraston, Alisdair B -- Atherly, Todd -- Ziemer, Cherie J -- Williams, Spencer J -- Davies, Gideon J -- Abbott, D Wade -- Martens, Eric C -- Gilbert, Harry J -- 097907/Wellcome Trust/United Kingdom -- BB/G016127/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- GM090080/GM/NIGMS NIH HHS/ -- MOP-68913/Canadian Institutes of Health Research/Canada -- WT097907AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Jan 8;517(7533):165-9. doi: 10.1038/nature13995.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK [2] Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA. ; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK. ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA. ; Department of Chemistry, University of York, York YO10 5DD, UK. ; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia. ; Interdisciplinary Biochemistry Graduate Program, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA. ; Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA. ; Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, 2095 Constant Avenue, Lawrence, Kansas 66047, USA. ; Oxyrane, 9052 Ghent, Belgium. ; Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA. ; Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada. ; Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada. ; USDA, Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, Iowa 50011, USA. ; 1] Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA [2] Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteroidetes/cytology/enzymology/genetics/*metabolism ; Biological Evolution ; Carbohydrate Conformation ; Diet ; Enzymes/genetics/metabolism ; Female ; Gastrointestinal Tract/*microbiology ; Genetic Loci/genetics ; Germ-Free Life ; Glycoproteins/chemistry/metabolism ; Humans ; Male ; Mannans/chemistry/*metabolism ; Mannose/metabolism ; Mice ; *Models, Biological ; Models, Molecular ; Oligosaccharides/chemistry/metabolism ; Periplasm/enzymology ; Yeasts/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-11-07
    Description: Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redondo, Pilar -- Prieto, Jesus -- Munoz, Ines G -- Alibes, Andreu -- Stricher, Francois -- Serrano, Luis -- Cabaniols, Jean-Pierre -- Daboussi, Fayza -- Arnould, Sylvain -- Perez, Christophe -- Duchateau, Philippe -- Paques, Frederic -- Blanco, Francisco J -- Montoya, Guillermo -- England -- Nature. 2008 Nov 6;456(7218):107-11. doi: 10.1038/nature07343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Macromolecular Crystallography Group, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Line ; Cricetinae ; Cricetulus ; Crystallography, X-Ray ; DNA/chemistry/*genetics/*metabolism ; DNA Repair ; DNA Restriction Enzymes/*chemistry/genetics/*metabolism/toxicity ; DNA-Binding Proteins/*genetics ; Enzyme Stability ; *Genetic Engineering ; Humans ; Models, Molecular ; Phosphorylation ; Protein Multimerization ; Substrate Specificity ; Xeroderma Pigmentosum/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-28
    Description: The activation-induced cytidine deaminase (AID; also known as AICDA) enzyme is required for somatic hypermutation and class switch recombination at the immunoglobulin locus. In germinal-centre B cells, AID is highly expressed, and has an inherent mutator activity that helps generate antibody diversity. However, AID may also regulate gene expression epigenetically by directly deaminating 5-methylcytosine in concert with base-excision repair to exchange cytosine. This pathway promotes gene demethylation, thereby removing epigenetic memory. For example, AID promotes active demethylation of the genome in primordial germ cells. However, different studies have suggested either a requirement or a lack of function for AID in promoting pluripotency in somatic nuclei after fusion with embryonic stem cells. Here we tested directly whether AID regulates epigenetic memory by comparing the relative ability of cells lacking AID to reprogram from a differentiated murine cell type to an induced pluripotent stem cell. We show that Aid-null cells are transiently hyper-responsive to the reprogramming process. Although they initiate expression of pluripotency genes, they fail to stabilize in the pluripotent state. The genome of Aid-null cells remains hypermethylated in reprogramming cells, and hypermethylated genes associated with pluripotency fail to be stably upregulated, including many MYC target genes. Recent studies identified a late step of reprogramming associated with methylation status, and implicated a secondary set of pluripotency network components. AID regulates this late step, removing epigenetic memory to stabilize the pluripotent state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762466/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762466/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Ritu -- DiMenna, Lauren -- Schrode, Nadine -- Liu, Ting-Chun -- Franck, Philipp -- Munoz-Descalzo, Silvia -- Hadjantonakis, Anna-Katerina -- Zarrin, Ali A -- Chaudhuri, Jayanta -- Elemento, Olivier -- Evans, Todd -- AI072194/AI/NIAID NIH HHS/ -- HL056182/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 HD052115/HD/NICHD NIH HHS/ -- R37 HL056182/HL/NHLBI NIH HHS/ -- T32 AI007621/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Aug 1;500(7460):89-92. doi: 10.1038/nature12299. Epub 2013 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Weill Cornell Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Dedifferentiation/genetics ; Cellular Reprogramming/genetics ; Cytidine Deaminase/genetics/*metabolism ; Epigenesis, Genetic/*genetics ; Female ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; HEK293 Cells ; Humans ; Male ; Mice ; Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-21
    Description: The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1beta, are released. This death pathway thus links the two signature events in HIV infection-CD4 T-cell depletion and chronic inflammation-and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of 'anti-AIDS' therapeutics targeting the host rather than the virus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doitsh, Gilad -- Galloway, Nicole L K -- Geng, Xin -- Yang, Zhiyuan -- Monroe, Kathryn M -- Zepeda, Orlando -- Hunt, Peter W -- Hatano, Hiroyu -- Sowinski, Stefanie -- Munoz-Arias, Isa -- Greene, Warner C -- 1DP1036502/DP/NCCDPHP CDC HHS/ -- DP1 DA036502/DA/NIDA NIH HHS/ -- NIH P30 AI027763/AI/NIAID NIH HHS/ -- P30 AI027763/AI/NIAID NIH HHS/ -- R21 AI102782/AI/NIAID NIH HHS/ -- R21AI102782/AI/NIAID NIH HHS/ -- T32 AI060537/AI/NIAID NIH HHS/ -- U19 AI096113/AI/NIAID NIH HHS/ -- U19AI0961133/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Jan 23;505(7484):509-14. doi: 10.1038/nature12940.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, California 94158, USA [2]. ; Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, California 94158, USA. ; Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, California 94143, USA. ; 1] Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, California 94158, USA [2] Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, California 94143, USA [3] Department of Microbiology and Immunology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24356306" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Adult ; Anti-HIV Agents/pharmacology ; CD4-Positive T-Lymphocytes/cytology/drug effects/*pathology/secretion ; Caspase 1/*metabolism ; Caspase 3/metabolism ; Caspase Inhibitors/administration & dosage/pharmacology ; Cell Death/drug effects ; HIV Infections/drug therapy/enzymology/*immunology/*pathology ; HIV-1/drug effects/growth & development/*pathogenicity ; Humans ; In Vitro Techniques ; Inflammasomes/immunology/metabolism ; Inflammation/complications/immunology/pathology/virology ; Interleukin-1beta/biosynthesis/secretion ; Lymph Nodes/enzymology ; Male ; Palatine Tonsil/drug effects/virology ; Protein Precursors/biosynthesis ; Spleen/drug effects/virology ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-14
    Description: Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sousa-Victor, Pedro -- Gutarra, Susana -- Garcia-Prat, Laura -- Rodriguez-Ubreva, Javier -- Ortet, Laura -- Ruiz-Bonilla, Vanessa -- Jardi, Merce -- Ballestar, Esteban -- Gonzalez, Susana -- Serrano, Antonio L -- Perdiguero, Eusebio -- Munoz-Canoves, Pura -- England -- Nature. 2014 Feb 20;506(7488):316-21. doi: 10.1038/nature13013. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Buck Institute for Research on Aging, Novato, California 94945, USA. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2]. ; Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain. ; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain. ; Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522534" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aging/*metabolism ; Animals ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/*metabolism ; E2F1 Transcription Factor/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Progeria/metabolism/pathology ; Regeneration ; Rejuvenation ; Retinoblastoma Protein/metabolism ; Satellite Cells, Skeletal Muscle/*cytology/*metabolism ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-29
    Description: Heart failure is characterized by a debilitating decline in cardiac function, and recent clinical trial results indicate that improving the contractility of heart muscle cells by boosting intracellular calcium handling might be an effective therapy. MicroRNAs (miRNAs) are dysregulated in heart failure but whether they control contractility or constitute therapeutic targets remains speculative. Using high-throughput functional screening of the human microRNAome, here we identify miRNAs that suppress intracellular calcium handling in heart muscle by interacting with messenger RNA encoding the sarcoplasmic reticulum calcium uptake pump SERCA2a (also known as ATP2A2). Of 875 miRNAs tested, miR-25 potently delayed calcium uptake kinetics in cardiomyocytes in vitro and was upregulated in heart failure, both in mice and humans. Whereas adeno-associated virus 9 (AAV9)-mediated overexpression of miR-25 in vivo resulted in a significant loss of contractile function, injection of an antisense oligonucleotide (antagomiR) against miR-25 markedly halted established heart failure in a mouse model, improving cardiac function and survival relative to a control antagomiR oligonucleotide. These data reveal that increased expression of endogenous miR-25 contributes to declining cardiac function during heart failure and suggest that it might be targeted therapeutically to restore function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131725/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131725/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wahlquist, Christine -- Jeong, Dongtak -- Rojas-Munoz, Agustin -- Kho, Changwon -- Lee, Ahyoung -- Mitsuyama, Shinichi -- van Mil, Alain -- Park, Woo Jin -- Sluijter, Joost P G -- Doevendans, Pieter A F -- Hajjar, Roger J -- Mercola, Mark -- HHSN268201000045C/HL/NHLBI NIH HHS/ -- HHSN26820100045C/PHS HHS/ -- P01 HL098053/HL/NHLBI NIH HHS/ -- P01HL098053/HL/NHLBI NIH HHS/ -- P20 HL100396/HL/NHLBI NIH HHS/ -- P20HL100396/HL/NHLBI NIH HHS/ -- P30 AR061303/AR/NIAMS NIH HHS/ -- P30 CA030199/CA/NCI NIH HHS/ -- P30AR061303/AR/NIAMS NIH HHS/ -- P30CA030199/CA/NCI NIH HHS/ -- P50 HL112324/HL/NHLBI NIH HHS/ -- P50HL112324/HL/NHLBI NIH HHS/ -- R01 HL088434/HL/NHLBI NIH HHS/ -- R01 HL093183/HL/NHLBI NIH HHS/ -- R01 HL108176/HL/NHLBI NIH HHS/ -- R01 HL113601/HL/NHLBI NIH HHS/ -- R01HL088434/HL/NHLBI NIH HHS/ -- R01HL093183/HL/NHLBI NIH HHS/ -- R01HL108176/HL/NHLBI NIH HHS/ -- R01HL113601/HL/NHLBI NIH HHS/ -- S10 RR021084/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Apr 24;508(7497):531-5. doi: 10.1038/nature13073. Epub 2014 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Bioengineering, University of California, San Diego, and the Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA [2]. ; 1] The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2]. ; Department of Bioengineering, University of California, San Diego, and the Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA. ; The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Department of Bioengineering, University of California, San Diego, and the Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cardiology, University Medical Center Utrecht and ICIN Netherlands Heart Institute, Heidelberglaan 100, room G02.523, 3584 CX Utrecht, The Netherlands. ; Global Research Laboratory, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, South Korea. ; Department of Cardiology, University Medical Center Utrecht and ICIN Netherlands Heart Institute, Heidelberglaan 100, room G02.523, 3584 CX Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Dependovirus/genetics ; Disease Models, Animal ; HEK293 Cells ; Heart/drug effects/physiology/physiopathology ; Heart Failure/*genetics/*therapy ; Humans ; Kinetics ; Male ; Mice ; MicroRNAs/analysis/*antagonists & inhibitors/genetics/metabolism ; Myocardial Contraction/*drug effects ; Myocardium/metabolism ; Myocytes, Cardiac/metabolism ; Oligonucleotides, Antisense/genetics/metabolism/pharmacology ; RNA, Messenger/genetics/metabolism ; Sarcoplasmic Reticulum/metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics/metabolism ; Survival Analysis ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-07
    Description: Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruibal, Paula -- Oestereich, Lisa -- Ludtke, Anja -- Becker-Ziaja, Beate -- Wozniak, David M -- Kerber, Romy -- Korva, Misa -- Cabeza-Cabrerizo, Mar -- Bore, Joseph A -- Koundouno, Fara Raymond -- Duraffour, Sophie -- Weller, Romy -- Thorenz, Anja -- Cimini, Eleonora -- Viola, Domenico -- Agrati, Chiara -- Repits, Johanna -- Afrough, Babak -- Cowley, Lauren A -- Ngabo, Didier -- Hinzmann, Julia -- Mertens, Marc -- Vitoriano, Ines -- Logue, Christopher H -- Boettcher, Jan Peter -- Pallasch, Elisa -- Sachse, Andreas -- Bah, Amadou -- Nitzsche, Katja -- Kuisma, Eeva -- Michel, Janine -- Holm, Tobias -- Zekeng, Elsa-Gayle -- Garcia-Dorival, Isabel -- Wolfel, Roman -- Stoecker, Kilian -- Fleischmann, Erna -- Strecker, Thomas -- Di Caro, Antonino -- Avsic-Zupanc, Tatjana -- Kurth, Andreas -- Meschi, Silvia -- Mely, Stephane -- Newman, Edmund -- Bocquin, Anne -- Kis, Zoltan -- Kelterbaum, Anne -- Molkenthin, Peter -- Carletti, Fabrizio -- Portmann, Jasmine -- Wolff, Svenja -- Castilletti, Concetta -- Schudt, Gordian -- Fizet, Alexandra -- Ottowell, Lisa J -- Herker, Eva -- Jacobs, Thomas -- Kretschmer, Birte -- Severi, Ettore -- Ouedraogo, Nobila -- Lago, Mar -- Negredo, Anabel -- Franco, Leticia -- Anda, Pedro -- Schmiedel, Stefan -- Kreuels, Benno -- Wichmann, Dominic -- Addo, Marylyn M -- Lohse, Ansgar W -- De Clerck, Hilde -- Nanclares, Carolina -- Jonckheere, Sylvie -- Van Herp, Michel -- Sprecher, Armand -- Xiaojiang, Gao -- Carrington, Mary -- Miranda, Osvaldo -- Castro, Carlos M -- Gabriel, Martin -- Drury, Patrick -- Formenty, Pierre -- Diallo, Boubacar -- Koivogui, Lamine -- Magassouba, N'Faly -- Carroll, Miles W -- Gunther, Stephan -- Munoz-Fontela, Cesar -- HHSN261200800001E/PHS HHS/ -- Z01 BC010791-01/Intramural NIH HHS/ -- Z01 BC010791-02/Intramural NIH HHS/ -- Z01 BC010792-01/Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):100-4. doi: 10.1038/nature17949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany. ; Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany. ; German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, and Marburg, Germany. ; European Mobile Laboratory Consortium, Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia. ; Institute of Experimental Virology, Twincore, Center for Experimental and Clinical Infection Research, 30625 Hannover, Germany. ; Hannover Medical School, 30625 Hannover, Germany. ; National Institute for Infectious Diseases 'Lazzaro Spallanzani', 00149 Rome, Italy. ; Public Health England, Porton Down, Salisbury SP4 0JG, UK. ; Public Health England, Colindale Ave, London NW9 5EQ, UK. ; Robert Koch Institute, 13353 Berlin, Germany. ; Friedrich Loeffler Institute, 17493 Greifswald-Island of Riems, Germany. ; Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland. ; Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK. ; Bundeswehr Institute of Microbiology, 80937 Munich, Germany. ; Institute of Virology, Philipps University, 35043 Marburg, Germany. ; Laboratoire P4-Jean Merieux, US003 INSERM, 69365 Lyon, France. ; National Center for Epidemiology, Hungarian National Biosafety Laboratory, H1097 Budapest, Hungary. ; European Centre for Disease Prevention and Control, 171 65 Solna, Sweden. ; Federal Office for Civil Protection, CH-3700 Spiez, Switzerland. ; Unite de Biologie des Infections Virales Emergentes, Institut Pasteur, 69365 Lyon, France. ; Eurice, European Research and Project Office, 10115 Berlin, Germany. ; Infectious Diseases Unit, Internal Medicine Service, Hospital La Paz, 28046 Madrid, Spain. ; National Center of Microbiology, Institute of Health 'Carlos III', 28220 Madrid, Spain. ; University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. ; Medecins sans Frontieres, B-1050 Brussels, Belgium. ; Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; Hospital Militar Central Dr. Carlos J. Finlay, 11400 Havana, Cuba. ; World Health Organization, 1211 Geneva 27, Switzerland. ; Institut National de Sante Publique, 2101 Conakry, Guinea. ; Universite Gamal Abdel Nasser de Conakry, CHU Donka, 2101 Conakry, Guinea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27147028" target="_blank"〉PubMed〈/a〉
    Keywords: CTLA-4 Antigen/metabolism ; Ebolavirus/*immunology ; Female ; Flow Cytometry ; Guinea/epidemiology ; Hemorrhagic Fever, Ebola/*immunology/mortality/*physiopathology ; Humans ; Inflammation Mediators/immunology ; Longitudinal Studies ; Lymphocyte Activation ; Male ; Patient Discharge ; Programmed Cell Death 1 Receptor/metabolism ; Survivors ; T-Lymphocytes/*immunology/metabolism ; Viral Load
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Munoz-Sanjuan, Ignacio -- England -- Nature. 2016 Mar 10;531(7593):141. doi: 10.1038/531141a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961621" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomedical Research/ethics ; Clinical Trials as Topic ; Family Planning Services ; Genetic Counseling ; Genetic Testing ; Health Services Accessibility/*ethics ; *Healthy Volunteers ; Heterozygote ; Humans ; *Huntington Disease/drug therapy/epidemiology/genetics ; Lobbying ; Quality of Life ; *Research Personnel ; *Residence Characteristics ; Venezuela/epidemiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-08
    Description: During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia-Prat, Laura -- Martinez-Vicente, Marta -- Perdiguero, Eusebio -- Ortet, Laura -- Rodriguez-Ubreva, Javier -- Rebollo, Elena -- Ruiz-Bonilla, Vanessa -- Gutarra, Susana -- Ballestar, Esteban -- Serrano, Antonio L -- Sandri, Marco -- Munoz-Canoves, Pura -- England -- Nature. 2016 Jan 7;529(7584):37-42. doi: 10.1038/nature16187.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), E-08003 Barcelona, Spain. ; Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-CIBERNED, E-08035 Barcelona, Spain. ; Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08907 Barcelona, Spain. ; Advanced Fluorescence Microscopy Unit, Molecular Biology Institute of Barcelona (IBMB-CSIC), E-08028 Barcelona, Spain. ; Department of Biomedical Science, University of Padova, 35100 Padova, Italy. ; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy. ; ICREA, E-08908 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26738589" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/pathology ; Animals ; Autophagy/*physiology ; *Cell Aging ; Cell Count ; Cyclin-Dependent Kinase Inhibitor p16/genetics ; Epigenesis, Genetic ; Homeostasis ; Humans ; Male ; Mice ; Mitochondria/metabolism/pathology ; Mitochondrial Degradation ; Muscle, Skeletal/cytology/pathology ; Organelles/metabolism ; Oxidative Stress ; Proteins/metabolism ; Reactive Oxygen Species/metabolism ; Regeneration ; Sarcopenia/pathology/prevention & control ; Satellite Cells, Skeletal Muscle/*cytology/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-18
    Description: Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, S Kathleen -- Amatangelo, Kathryn L -- Behrensmeyer, Anna K -- Bercovici, Antoine -- Blois, Jessica L -- Davis, Matt -- DiMichele, William A -- Du, Andrew -- Eronen, Jussi T -- Faith, J Tyler -- Graves, Gary R -- Jud, Nathan -- Labandeira, Conrad -- Looy, Cindy V -- McGill, Brian -- Miller, Joshua H -- Patterson, David -- Pineda-Munoz, Silvia -- Potts, Richard -- Riddle, Brett -- Terry, Rebecca -- Toth, Aniko -- Ulrich, Werner -- Villasenor, Amelia -- Wing, Scott -- Anderson, Heidi -- Anderson, John -- Waller, Donald -- Gotelli, Nicholas J -- England -- Nature. 2016 Jan 7;529(7584):80-3. doi: 10.1038/nature16447. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013, USA. ; Department of Environmental Science and Biology, The College at Brockport - SUNY, Brockport, New York 14420, USA. ; School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA. ; Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, USA. ; Hominid Paleobiology Doctoral Program, Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, George Washington University, Washington DC 20052, USA. ; Department of Geosciences and Geography, University of Helsinki, PO Box 64, 00014 University of Helsinki, Finland. ; School of Social Science, The University of Queensland, Brisbane, Queensland 4072, Australia. ; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013, USA. ; Center for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen 2100, Denmark. ; Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742, USA. ; Florida Museum of Natural History, University of Florida, Gainsville, Florida 32611, USA. ; Department of Entomology, University of Maryland College Park, College Park, Maryland 20742, USA. ; Key Lab of Insect Evolution and Environmental Changes, Capital Normal University, Beijing 100048, China. ; Department of Integrative Biology and Museum of Paleontology, University of California Berkeley, Berkeley, California 94720, USA. ; School Biology and Ecology &Sustainability Solutions Initiative, University of Maine, Orono, Maine 04469, USA. ; Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221, USA. ; Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Anthropology, Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington DC 20013, USA. ; School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada 89154, USA. ; Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331, USA. ; Chair of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland. ; Evolutionary Studies Institute, University of the Witwatersrand, Jorissen Street, Braamfontein, Johannesburg 2001, South Africa. ; Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ; Department of Biology, University of Vermont, Burlington, Vermont 05405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675730" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; Animals ; *Ecosystem ; History, Ancient ; Human Activities/*history ; Humans ; North America ; *Plant Physiological Phenomena ; Population Dynamics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...