ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-04
    Description: Efficient phagocytosis of apoptotic cells is crucial for tissue homeostasis and the immune response. Rab5 is known as a key regulator of the early endocytic pathway and we have recently shown that Rab5 is also implicated in apoptotic cell engulfment; however, the precise spatio-temporal dynamics of Rab5 activity remain unknown. Here, using a newly developed fluorescence resonance energy transfer biosensor, we describe a change in Rab5 activity during the engulfment of apoptotic thymocytes. Rab5 activity on phagosome membranes began to increase on disassembly of the actin coat encapsulating phagosomes. Rab5 activation was either continuous or repetitive for up to 10 min, but it ended before the collapse of engulfed apoptotic cells. Expression of a dominant-negative mutant of Rab5 delayed this collapse of apoptotic thymocytes, showing a role for Rab5 in phagosome maturation. Disruption of microtubules with nocodazole inhibited Rab5 activation on the phagosome membrane without perturbing the engulfment of apoptotic cells. Furthermore, we found that Gapex-5 is the guanine nucleotide exchange factor essential for Rab5 activation during the engulfment of apoptotic cells. Gapex-5 was bound to a microtubule-tip-associating protein, EB1, whose depletion inhibited Rab5 activation during phagocytosis. We therefore propose a mechanistic model in which the recruitment of Gapex-5 to phagosomes through the microtubule network induces the transient Rab5 activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitano, Masahiro -- Nakaya, Michio -- Nakamura, Takeshi -- Nagata, Shigekazu -- Matsuda, Michiyuki -- England -- Nature. 2008 May 8;453(7192):241-5. doi: 10.1038/nature06857. Epub 2008 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18385674" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Apoptosis ; Cells, Cultured ; Fluorescence Resonance Energy Transfer ; Genes, Dominant ; Guanine Nucleotide Exchange Factors/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Microtubule-Associated Proteins/metabolism ; Microtubules/drug effects ; Nocodazole/pharmacology ; Phagocytosis/drug effects ; Phagosomes/drug effects/*metabolism ; Swiss 3T3 Cells ; Thymus Gland/cytology/drug effects/metabolism ; rab5 GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-30
    Description: Innate immunity is stimulated not only by viral or bacterial components, but also by non-microbial danger signals (damage-associated molecular patterns). One of the damage-associated molecular patterns is chromosomal DNA that escapes degradation. In programmed cell death and erythropoiesis, DNA from dead cells or nuclei expelled from erythroblasts is digested by DNase II in the macrophages after they are engulfed. DNase II(-/-) (also known as Dnase2a(-/-)) mice suffer from severe anaemia or chronic arthritis due to interferon-beta (IFN-beta) and tumour necrosis factor-alpha (TNF-alpha) produced from the macrophages carrying undigested DNA in a Toll-like receptor (TLR)-independent mechanism. Here we show that Eyes absent 4 (EYA4), originally identified as a co-transcription factor, stimulates the expression of IFN-beta and CXCL10 in response to the undigested DNA of apoptotic cells. EYA4 enhanced the innate immune response against viruses (Newcastle disease virus and vesicular stomatitis virus), and could associate with signalling molecules (IPS-1 (also known as MAVS), STING (TMEM173) and NLRX1). Three groups have previously shown that EYA has phosphatase activity. We found that mouse EYA family members act as a phosphatase for both phosphotyrosine and phosphothreonine. The haloacid dehalogenase domain at the carboxy terminus contained the tyrosine-phosphatase, and the amino-terminal half carried the threonine-phosphatase. Mutations of the threonine-phosphatase, but not the tyrosine-phosphatase, abolished the ability of EYA4 to enhance the innate immune response, suggesting that EYA regulates the innate immune response by modulating the phosphorylation state of signal transducers for the intracellular pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okabe, Yasutaka -- Sano, Teruyuki -- Nagata, Shigekazu -- England -- Nature. 2009 Jul 23;460(7254):520-4. doi: 10.1038/nature08138. Epub 2009 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19561593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Line ; Chemokine CXCL10/metabolism ; Gene Expression Regulation/*immunology ; Humans ; Immunity, Innate/*immunology ; Interferon-beta/metabolism ; Membrane Proteins/metabolism ; Mice ; Mitochondrial Proteins/metabolism ; Phosphoprotein Phosphatases/*metabolism ; Signal Transduction ; Trans-Activators/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-26
    Description: In all animal cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. This asymmetrical phospholipid distribution is disrupted in various biological systems. For example, when blood platelets are activated, they expose phosphatidylserine (PtdSer) to trigger the clotting system. The PtdSer exposure is believed to be mediated by Ca(2+)-dependent phospholipid scramblases that transport phospholipids bidirectionally, but its molecular mechanism is still unknown. Here we show that TMEM16F (transmembrane protein 16F) is an essential component for the Ca(2+)-dependent exposure of PtdSer on the cell surface. When a mouse B-cell line, Ba/F3, was treated with a Ca(2+) ionophore under low-Ca(2+) conditions, it reversibly exposed PtdSer. Using this property, we established a Ba/F3 subline that strongly exposed PtdSer by repetitive fluorescence-activated cell sorting. A complementary DNA library was constructed from the subline, and a cDNA that caused Ba/F3 to expose PtdSer spontaneously was identified by expression cloning. The cDNA encoded a constitutively active mutant of TMEM16F, a protein with eight transmembrane segments. Wild-type TMEM16F was localized on the plasma membrane and conferred Ca(2+)-dependent scrambling of phospholipids. A patient with Scott syndrome, which results from a defect in phospholipid scrambling activity, was found to carry a mutation at a splice-acceptor site of the gene encoding TMEM16F, causing the premature termination of the protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Jun -- Umeda, Masato -- Sims, Peter J -- Nagata, Shigekazu -- England -- Nature. 2010 Dec 9;468(7325):834-8. doi: 10.1038/nature09583. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/cytology/drug effects ; Calcium/antagonists & inhibitors/*metabolism/pharmacology ; Cell Line ; Cell Membrane/drug effects/*metabolism ; Cloning, Molecular ; DNA, Complementary/genetics ; Flow Cytometry ; Gene Library ; Humans ; Ionophores/pharmacology ; Mice ; Mutant Proteins/chemistry/genetics/metabolism ; Phosphatidylserines/metabolism ; Phospholipid Transfer Proteins/chemistry/genetics/*metabolism ; Phospholipids/*metabolism ; RNA Splice Sites/genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Syndrome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakahira, Hideki -- Enari, Masato -- Nagata, Shigekazu -- England -- Nature. 2015 Oct 29;526(7575):728. doi: 10.1038/nature15532. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416741" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-05-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagata, Shigekazu -- England -- Nature. 2016 May 18;533(7604):474-6. doi: 10.1038/nature18439.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27225115" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspases/*metabolism ; *Cell Differentiation ; Cytochrome c Group/*metabolism ; Drosophila melanogaster/*cytology ; Male ; Spermatozoa/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 50 (1985), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Soy sauce was produced continuously for 80 days in 280 liter column-type reactors containing immobilized whole cells of Pediococcus halophilus, Saccharomyces rouxii, and Torulopsis versatilis entrapped in calcium alginate gels. The divided lactic acid and alcohol fermentation by viable cells of three kinds with feed solution obtained from enzymatic hydrolyzate of koji and defatted soybean meal proceeded in shorter time than a complex fermentation of moromi (soy sauce mash) in the slurry state. The refined products fermented by this process had good taste and flavor, and were close to the conventional soy sauce with respect to organic acid and aroma components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 496 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...